सहयोगी आव्यूह
रैखिक बीजगणित में मोनिक बहुपद का फ्रोबेनियस साथी आव्यूह
वर्ग आव्यूह के रूप में परिभाषित किया गया है
- .
कुछ लेखक इस आव्यूह के स्थानांतरण का उपयोग करते हैं, जो (दोहरी) चक्र समन्वय करता है, और कुछ उद्देश्यों के लिए अधिक सुविधाजनक है, जैसे रैखिक पुनरावृत्ति संबंध।
विशेषता
C(p) का अभिलक्षणिक बहुपद और न्यूनतम बहुपद p के समान हैं।[1]
इस अर्थ में, आव्यूह C(p) बहुपद p का "साथी" है।
यदि A कुछ क्षेत्र K से प्रविष्टियों के साथ एक n-by-n आव्यूह है, तो निम्नलिखित कथन समतुल्य हैं:
- A अपने अभिलक्षणिक बहुपद के K के साथी आव्यूह के समान है
- A का अभिलक्षणिक बहुपद A के न्यूनतम बहुपद से मेल खाता है, समकक्ष न्यूनतम बहुपद की घात n होती है
- A के लिए में एक चक्रीय सदिश v उपस्थित है, जिसका अर्थ है कि {v, Av, A2v, ..., An−1v} V का आधार है। समान रूप से, जैसे कि V एक -मॉड्यूल (और के रूप में चक्रीय है; एक कहता है कि A गैर-अपमानजनक है।
प्रत्येक वर्ग आव्यूह एक साथी आव्यूह के समान नहीं है। किंतु प्रत्येक वर्ग आव्यूह A साथी आव्यूह के ब्लॉक से बने आव्यूह के समान है। यदि हम यह भी मांग करते हैं कि ये बहुपद एक-दूसरे को विभाजित करते हैं, तो वे विशिष्ट रूप से A द्वारा निर्धारित होते हैं। विवरण के लिए, तर्कसंगत विहित रूप देखें।
विकर्णीयता
यदि p(t) की अलग-अलग जड़ें हैं λ1, ..., λn (C(p) का आइगेनवैल्यू), तो C(p) निम्नानुसार विकर्णीय है:
जहां V , λ के अनुरूप वेंडरमोंडे मैट्रिक्स है।
उस स्थिति में, [2] C की शक्तियों m के निशान आसानी से p(t) की सभी जड़ों की समान शक्तियों एम का योग प्राप्त करते हैं,
अगर p(t) में एक गैर-सरल जड़ है, तो C(p) विकर्णीय नहीं है (इसके जॉर्डन विहित रूप में प्रत्येक विशिष्ट जड़ के लिए एक ब्लॉक होता है)।
रैखिक पुनरावर्ती अनुक्रम
विशेषता बहुपद के साथ एक रैखिक पुनरावर्ती अनुक्रम दिया गया है
(ट्रांसपोज़) साथी आव्यूह
अनुक्रम उत्पन्न करता है, इस अर्थ में
श्रृंखला को 1 से बढ़ाता है।
सदिश (1,t,t2, ..., tn-1)आइगेनवैल्यू t के लिए इस मैट्रिक्स का एक आइगेनवेक्टर्स है, जब t विशेषता बहुपद p(t) का मूल है।
c0 = −1, और अन्य सभी ci=0 यानी, p(t) = tn−1 के लिए, यह मैट्रिक्स सिल्वेस्टर के चक्रीय शिफ्ट मैट्रिक्स, या सर्कुलर मैट्रिक्स में कम हो जाता है।
रैखिक ODE से रैखिक ODE प्रणाली तक
पहले सामान्य रूप में एक सजातीय प्रणाली पर विचार करें।
क्रम का एक रैखिक ODE n अदिश फलन के लिए y
इसे सदिश फ़ंक्शन के लिए क्रम 1 की युग्मित रैखिक ODE प्रणाली के रूप में वर्णित किया जा सकता है z = (y, y(1), ..., y(n-1))T
कहाँ C(p)T मोनिक बहुपद के लिए साथी आव्यूह का स्थानान्तरण है p(t) = c0 + c1 t + ... + cn-1tn-1 + tn.
ODE में गुणांक निर्धारित करना {ci}i=0n-1 केवल अदिश मान ही नहीं बल्कि स्वतंत्र चर के फलन भी हो सकते हैं।
सिस्टम सामान्य रूप से युग्मित है क्योंकि z(1)n न केवल पर निर्भर करता है zn. अगर C(p) उलटा है तो कंपेनियन आव्यूह #डायगोनलिज़ेबिलिटी पर अनुभाग में वर्णित अनुसार समन्वय परिवर्तन करके इसे अलग करना संभव है।
अमानवीय मामले के लिए
असमरूपता पद प्रपत्र का एक सदिश फलन बन जाएगा F(x)= (0, ..., 0, f(x))T
- .
यह भी देखें
- फ्रोबेनियस एंडोमोर्फिज्म
- केली-हैमिल्टन प्रमेय
- क्रायलोव उपस्थान
टिप्पणियाँ
- ↑ Horn, Roger A.; Charles R. Johnson (1985). Matrix Analysis. Cambridge, UK: Cambridge University Press. pp. 146–147. ISBN 0-521-30586-1. Retrieved 2010-02-10.
- ↑ Bellman, Richard (1987), Introduction to Matrix Analysis, SIAM, ISBN 0898713994 .
[Category:Matrix theo