हार्मोनिक संतुलन

From Vigyanwiki

संनादी संतुलन एक ऐसी विधि है जिसका उपयोग गैर-रेखीय अंतर समीकरणों की स्थिर-अवस्था प्रतिक्रिया की गणना करने के लिए किया जाता है[1] और अधिकतर गैर-रैखिक विद्युत परिपथों पर अनुप्रयुक्त किया जाता है।[2][3]विभिन्न काल प्रक्षेत्र स्थिर अवस्था विधियों के विपरीत, स्थिर अवस्था की गणना के लिए यह आवृत्ति प्रक्षेत्र विधि है। संनादी संतुलन नाम विधि का वर्णनात्मक है, जो आवृत्ति प्रक्षेत्र में लिखे गए किरचॉफ के वर्तमान नियम और संनादी की एक चुनी हुई संख्या से प्रारंभ होता है। एक प्रणाली में एक गैर-रैखिक घटक पर अनुप्रयुक्त एक ज्यावक्रीय संकेत मौलिक आवृत्ति के संनादी उत्पन्न करेगा। प्रभावी रूप से विधि मानती है कि समाधान को ज्यावक्रीय के एक रैखिक संयोजन द्वारा दर्शाया जा सकता है, फिर किरचॉफ के नियम को संतुष्ट करने के लिए धारा और वोल्टता ज्यावक्रीय को संतुलित करता है। इस विधि का उपयोग सामान्यतः परिपथ का अनुकरण करने के लिए किया जाता है जिसमें गैर-रैखिक तत्व सम्मिलित होते हैं[4] और यह पुनर्भरण वाली प्रणाली पर सबसे अधिक अनुप्रयुक्त होता है जिसमें सीमित चक्र होते हैं।

विद्युत् अभियान्त्रिकी में संनादी संतुलन विधियों के लिए सूक्ष्मतरंग परिपथ मूल अनुप्रयोग थे। सूक्ष्मतरंग परिपथ अच्छी तरह से अनुकूल थे, क्योंकि ऐतिहासिक रूप से, सूक्ष्मतरंग परिपथ में कई रैखिक घटक होते हैं, जिन्हें आवृत्ति प्रक्षेत्र में दर्शाया जा सकता है, साथ ही कुछ गैर-रैखिक घटक भी होते हैं। प्रणाली का आकार सामान्यतः छोटा था। अधिक सामान्य परिपथों के लिए, इस विधि को 1990 के दशक के मध्य तक इन बहुत छोटे परिपथों को छोड़कर सभी के लिए अव्यावहारिक माना जाता था, जब क्रायलोव उपसमष्‍टि विधियों को समस्या पर अनुप्रयुक्त किया गया था।[5][6] पूर्वानुकूलित क्रायलोव उपसमष्‍टि विधियों के अनुप्रयोग ने परिपथ के आकार और संनादी की संख्या दोनों में बहुत बड़ी प्रणालियों को हल करने की अनुमति दी। इसने रेडियो-आवृत्ति एकीकृत परिपथ (RFIC) का विश्लेषण करने के लिए संनादी संतुलन विधियों के वर्तमान उपयोग को व्यावहारिक बना दिया।

उदाहरण

[7]

अंतर समीकरण पर विचार करें। हम अंसत्ज़ समाधान का उपयोग करते हैं और प्लगन करने पर, हमें प्राप्त होता है:

फिर पद का मिलान करके, हमारे पास है, जो सन्निकट समय देता है।

अधिक सटीक सन्निकटन के लिए, हम अंसत्ज़ समाधान का उपयोग करते हैं। फिर , पद का प्लगन और मिलान करके, हम नियमित बीजगणित के बाद प्राप्त करते हैं:

के लिए घन समीकरण की केवल एक ही वास्तविक वर्गमूल है। इसके साथ, हम एक सन्निकट समय प्राप्त करते हैं:
इस प्रकार हम सटीक समाधान तक पहुंचते हैं।

कलन विधि

संनादी संतुलन कलन विधि गैलेरकिन की विधि का एक विशेष संस्करण है। इसका उपयोग समीकरणों की स्वायत्त और गैर-स्वायत्त अंतर-बीजगणितीय प्रणालियों के आवधिक समाधान की गणना के लिए किया जाता है: गैर-स्वायत्त प्रणालियों का विवेचन स्वायत्त प्रणालियों के विवेचन की तुलना में थोड़ा सरल है। एक गैर-स्वायत्त डीएई प्रणाली का प्रतिनिधित्व है।

पर्याप्त सहज फलन के साथ, जहाँ समीकरणों की संख्या है और समय के लिए परोक्षी, अज्ञात के सदिश और समय-व्युत्पन्न के सदिश हैं।

यदि फलन है तो प्रणाली गैर-स्वायत्त है, (कुछ) निश्चित और के लिए स्थिर नहीं है, फिर भी, हमें आवश्यकता है कि एक ज्ञात उत्तेजन समय ऐसा है कि , -आवधिक है।

प्रणाली समीकरणों का -आवधिक समाधान सोबोलेव समष्‍टि है, के लिए एक स्वाभाविक पदान्वेषी निर्धारित किया गया है। अंतराल पर दुर्बलतापूर्वक भिन्न फलनों की आवधिक सीमा स्थितियों के साथ है। हम मानते हैं कि सहजता और संरचना , सुनिश्चित करता है कि सभी के लिए वर्ग-पूर्णांक है।

प्रणाली संनादी फलनों का एक शाउडर आधार है और एक हिल्बर्ट समष्‍टि: का :हिल्बर्ट आधार बनाता है। इसलिए, प्रत्येक समाधान पदान्वेषी एक फूरियर-श्रृंखला द्वारा प्रतिनिधित्व किया जा सकता है फूरियर-गुणांकों के साथ और प्रत्येक आधार फलन के लिए प्रणाली समीकरण कमजोर अर्थों में संतुष्ट है परिवर्तनशील समीकरण

पूरा हो गया है। यह परिवर्तनशील समीकरण स्केलर समीकरणों के एक अनंत अनुक्रम का प्रतिनिधित्व करता है क्योंकि इसे अनंत संख्या में आधार फलनों के लिए परीक्षण किया जाना है में .

संनादी संतुलन के लिए गैलेरकिन दृष्टिकोण पदान्वेषी समुच्चय के साथ-साथ परिमित समीकरण के लिए परीक्षण स्थान को परिमित आधार द्वारा परिमित आयामी उप-अंतरिक्ष में प्रोजेक्ट करना है। .

यह परिमित-आयामी समाधान देता है और समीकरणों का परिमित समुच्चय

जिसे संख्यात्मक रूप से हल किया जा सकता है।

इलेक्ट्रॉनिक्स के विशेष संदर्भ में कलन विधि आवृत्ति-प्रक्षेत्र में लिखे किरचॉफ के वर्तमान नियम से शुरू होता है। प्रक्रिया की दक्षता बढ़ाने के लिए, परिपथ को इसके रैखिक और गैर-रैखिक भागों में विभाजित किया जा सकता है, क्योंकि रैखिक भाग को आसानी से वर्णित किया जाता है और आवृत्ति प्रक्षेत्र में सीधे नोडल विश्लेषण का उपयोग करके गणना की जाती है।

सबसे पहले, समाधान के लिए प्रारंभिक अनुमान लगाया जाता है, फिर पुनरावृत्त प्रक्रिया जारी रहती है:

  1. वोल्टेज रैखिक भाग की धाराओं की गणना करने के लिए उपयोग किया जाता है, आवृत्ति प्रक्षेत्र में।
  2. वोल्टेज तब गैर-रैखिक भाग में धाराओं की गणना करने के लिए उपयोग किया जाता है, . चूंकि अरैखिक उपकरणों को समय प्रक्षेत्र, आवृत्ति-प्रक्षेत्र वोल्टेज में वर्णित किया गया है समय प्रक्षेत्र में तब्दील हो जाते हैं, सामान्यतः उलटा फास्ट फूरियर रूपांतरण का उपयोग करते हैं। गैर-रैखिक उपकरणों का मूल्यांकन समय-क्षेत्र वोल्टेज तरंगों का उपयोग करके उनके समय-क्षेत्र धाराओं का उत्पादन करने के लिए किया जाता है। धाराओं को फिर आवृत्ति प्रक्षेत्र में बदल दिया जाता है।
  3. किरचॉफ के वर्तमान नियम के अनुसार | किरचॉफ के परिपथ नियम, धाराओं का योग शून्य होना चाहिए, . नेटवर्क वोल्टेज को अपडेट करने के लिए एक पुनरावृत्त प्रक्रिया, सामान्यतः न्यूटन पुनरावृत्ति का उपयोग किया जाता है जैसे कि वर्तमान अवशिष्ट कम किया गया है। इस कदम के लिए जैकोबियन मैट्रिक्स और निर्धारक के निर्माण की आवश्यकता है .

अभिसरण तब होता है जब स्वीफलन रूप से छोटा है, जिस बिंदु पर स्थिर-अवस्था समाधान के सभी वोल्टेज और धाराओं को जाना जाता है, जिसे अक्सर फूरियर गुणांक के रूप में दर्शाया जाता है।

संदर्भ

  1. Deuflhard, Peter (2006). Newton Methods for Nonlinear Problems. Berlin: Springer-Verlag. Section 7.3.3.: Fourier collocation method.
  2. Gilmore, R. J.; Steer, M. B. (1991). "Nonlinear circuit analysis using the method of harmonic balance—A review of the art. Part I. Introductory concepts". Int. J. Microw. Mill.-Wave Comput.-Aided Eng. 1: 22–37. doi:10.1002/mmce.4570010104.
  3. Curtice, W. R., Ettenberg, M. (4–6 June 1985). "A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers". IEEE International Microwave Symposium Digest (MTT-S). St. Louis, MO, USA. 85: 405–408. doi:10.1109/MWSYM.1985.1131996. S2CID 111044329.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Maas, Stephen A. (2003). Nonlinear microwave and RF circuits. Artech House. ISBN 978-1-58053-484-0.
  5. Feldmann, P.; Melville, B.; Long, D. (1996). Efficient frequency domain analysis of large nonlinear analog circuits. pp. 461–464. doi:10.1109/CICC.1996.510597. ISBN 978-0-7803-3117-4. S2CID 62356450. {{cite book}}: |journal= ignored (help)
  6. Brachtendorf, H.G.; Welsch, G.; Laur, R. (1995). Fast simulation of the steady-state of circuits by the harmonic balance technique. p. 1388. doi:10.1109/ISCAS.1995.520406. ISBN 978-0-7803-2570-8. S2CID 3718242. {{cite book}}: |journal= ignored (help)
  7. Mickens, Ronald (1984). "हार्मोनिक संतुलन की विधि पर टिप्पणियाँ". Journal of Sound and Vibration (in English). 94 (3): 456. doi:10.1016/S0022-460X(84)80025-5.