द्वैध हान बहुपद

From Vigyanwiki
Revision as of 16:29, 8 September 2023 by alpha>Sugatha (Sugatha moved page दोहरे हान बहुपद to द्वैध हान बहुपद without leaving a redirect)

गणित में, दोहरे हान बहुपद एक समूह हैं जो एस्की योजना के अतिज्यामितीय ऑर्थोगोनल बहुपद के रूप में आते हैं। ये बहुपद एक असमान नियम पर परिभाषित होते हैं, जिसे रूप में लिखा जा सकता हैं


के लिए और पैरामीटर तक सीमित हैं .

ध्यान दें कि वह 'उच्छविकल्पी फैक्टोरियल' है जिसे 'पोचाम्मर चिह्न' के रूप में भी जाना जाता है, और 'सामान्यीकृत अतिज्यामितीय फलन' है।

रोलोफ कोकोइक, पीटर ए. लेस्की, और रेने एफ. स्वारट्टू ने 2010 में प्रकाशित ज्ञानसाधन में दोहरे हान बहुपदों के गुणों की एक विस्तृत सूची प्रदान की है।

रूढ़िवादिता

दोहरे हान बहुपदों में रूढ़िवादिता की स्थिति होती है

के लिए . जहाँ ,

और


संख्यात्मक अस्थिरता

जब की मान बढ़ता है, तो दोहरे हान बहुपद का मान भी बढ़ जाता हैं। इस परिणामस्वरूप, बहुपदों की गणना करने में संख्यात्मक स्थिरता प्राप्त करने के लिए, आप पुनर्सामान्यीकृत दोहरे हान बहुपद का उपयोग करेंगे जैसा कि परिभाषित किया गया है:

के लिए .

तब रूढ़िवादिता की स्थिति बन जाती है

के लिए


अन्य बहुपदों से संबंध

हान बहुपद, , एक समान नियम पर पर परिभाषित होते हैं, और पैरामीटर की परिभाषा निम्नलिखित होती है:

पुनः, समुच्चय करने से हान बहुपद चौबीसवे बहुपद बन जाते हैं। ध्यान दें कि दोहरे हान बहुपद का एक q-एनालॉग होता है जिसमें एक अतिरिक्त पैरामीटर q होता है, जिसे ड्यूल q-हान बहुपदों के रूप में जाना जाता है।

राका बहुपद दोहरे हान बहुपद का एक सामान्यीकरण है।

संदर्भ

  • Zhu, Hongqing (2007), "Image analysis by discrete orthogonal dual Hahn moments" (PDF), Pattern Recognition Letters, 28 (13): 1688–1704, doi:10.1016/j.patrec.2007.04.013
  • Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2 (1–2): 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248