सहयोगी आव्यूह

From Vigyanwiki
Revision as of 06:35, 7 September 2023 by Indicwiki (talk | contribs) (11 revisions imported from alpha:सहयोगी_आव्यूह)

रैखिक बीजगणित में मोनिक बहुपद का फ्रोबेनियस सहयोगी आव्यूह

वर्ग आव्यूह के रूप में परिभाषित किया गया है

.

कुछ लेखक इस आव्यूह के स्थानांतरण का उपयोग करते हैं, जो (दोहरी) चक्र समन्वय करता है, और कुछ उद्देश्यों के लिए अधिक सुविधाजनक है, जैसे रैखिक पुनरावृत्ति संबंध हैं।

विशेषता

C(p) का अभिलक्षणिक बहुपद और न्यूनतम बहुपद p के समान हैं।[1]

इस अर्थ में, आव्यूह C(p) बहुपद p का "साथी" है।

यदि A कुछ क्षेत्र K से प्रविष्टियों के साथ n-by-n आव्यूह है, तब निम्नलिखित कथन समतुल्य हैं:

  • A अपने अभिलक्षणिक बहुपद के K के साथी आव्यूह के समान है
  • A का अभिलक्षणिक बहुपद A के न्यूनतम बहुपद से मेल खाता है, समकक्ष न्यूनतम बहुपद की घात n होती है
  • A के लिए में चक्रीय सदिश v उपस्थित है, जिसका अर्थ है कि {v, Av, A2v, ..., An−1v} V का आधार है। समान रूप से, जैसे कि V -मॉड्यूल (और के रूप में चक्रीय है; कहता है कि A गैर-अपमानजनक है।

प्रत्येक वर्ग आव्यूह साथी आव्यूह के समान नहीं है। किंतु प्रत्येक वर्ग आव्यूह A साथी आव्यूह के ब्लॉक से बने आव्यूह के समान है। यदि हम यह भी मांग करते हैं कि तब बहुपद एक-दूसरे को विभाजित करते हैं, तब वे विशिष्ट रूप से A द्वारा निर्धारित होते हैं। विवरण के लिए, तर्कसंगत विहित रूप देखें।

विकर्णीयता

यदि p(t) की अलग-अलग जड़ें हैं λ1, ..., λn (C(p) का आइगेनवैल्यू), तब C(p) निम्नानुसार विकर्णीय है |

जहां V , λ के अनुरूप वेंडरमोंडे आव्यूह है।

उस स्थिति में, [2] C की शक्तियों m के निशान सरलता से p(t) की सभी जड़ों की समान शक्तियों m का योग प्राप्त करते हैं,

अगर p(t) में गैर-सरल जड़ है, तब C(p) विकर्णीय नहीं है (इसके जॉर्डन विहित रूप में प्रत्येक विशिष्ट जड़ के लिए ब्लॉक होता है)।

रैखिक पुनरावर्ती अनुक्रम

विशेषता बहुपद के साथ रैखिक पुनरावर्ती अनुक्रम दिया गया है

(ट्रांसपोज़) साथी आव्यूह

अनुक्रम उत्पन्न करता है, इस अर्थ में

श्रृंखला को 1 से बढ़ाता है।

सदिश (1,t,t2, ..., tn-1) आइगेनवैल्यू t के लिए इस आव्यूह का आइगेनवेक्टर्स है, जब t विशेषता बहुपद p(t) का मूल है।

c0 = −1, और अन्य सभी ci=0 अथार्त , p(t) = tn−1 के लिए, यह आव्यूह सिल्वेस्टर के चक्रीय शिफ्ट आव्यूह , या सर्कुलर आव्यूह में कम हो जाता है।

रैखिक ओडीई से रैखिक ओडीई प्रणाली

पहले सामान्य रूप में सजातीय प्रणाली पर विचार करें।

अदिश फलन y के लिए क्रम n का रैखिक ओडीई है

सदिश फलन z = (y, y(1), ..., y(n-1))T के लिए क्रम 1 की युग्मित रैखिक ओडीई प्रणाली के रूप में समान रूप से वर्णित किया जा सकता है

जहां C(p)T मोनिक बहुपद p(t) = c0 + c1 t + ... + cn-1tn-1 + tn के लिए साथी आव्यूह का स्थानान्तरण है।

ओडीई सेटिंग में गुणांक {ci}i=0n-1 केवल अदिश मान ही नहीं किंतु स्वतंत्र चर के कार्य भी हो सकते हैं।

प्रणाली सामान्य रूप से युग्मित है क्योंकि z(1)n न केवल zn पर निर्भर करता है। यदि C(p) व्युत्क्रम है तब विकर्णीकरण पर अनुभाग में वर्णित अनुसार समन्वय परिवर्तन करके इसे अलग करना संभव है।

अमानवीय स्थिति के लिए

अमानवीयता पद F(x)= (0, ..., 0, f(x))T के रूप का सदिश फलन बन जाएगा

.

यह भी देखें

टिप्पणियाँ

  1. Horn, Roger A.; Charles R. Johnson (1985). Matrix Analysis. Cambridge, UK: Cambridge University Press. pp. 146–147. ISBN 0-521-30586-1. Retrieved 2010-02-10.
  2. Bellman, Richard (1987), Introduction to Matrix Analysis, SIAM, ISBN 0898713994 .

[Category:Matrix theo