रडार प्रदर्शन

From Vigyanwiki
Revision as of 06:52, 15 September 2023 by Indicwiki (talk | contribs) (24 revisions imported from alpha:रडार_प्रदर्शन)
एक हवाई अड्डा निगरानी रडार प्रदर्शन

राडार डिस्प्ले संचालक को रडार डेटा प्रस्तुत करने के लिए इलेक्ट्रॉनिक उपकरण है। रडार प्रणाली स्पंदों या विद्युत चुम्बकीय विकिरण की निरंतर तरंगों को प्रसारित करती है, जिसका छोटा सा भाग लक्ष्य (इच्छित या अन्यथा) से पीछे हट जाता है और रडार प्रणाली में वापस आ जाता है। प्राप्त करने वाला सभी प्राप्त विद्युत चुम्बकीय विकिरण को अलग-अलग (या दोलन) वोल्टेज के निरंतर इलेक्ट्रॉनिक एनालॉग संकेत में परिवर्तित करता है जिसे स्क्रीन डिस्प्ले में परिवर्तित किया जा सकता है।

आधुनिक प्रणालियाँ सामान्यतः मानचित्र जैसी छवि बनाने के लिए कुछ प्रकार के रेखापुंज ग्राफिक्स का उपयोग करती हैं। चूंकि, रडार के विकास की प्रारंभिक में, कई परिस्थितियों ने ऐसे डिस्प्ले को बनाना मुश्किल बना दिया। लोगों ने अंततः कई अलग-अलग प्रकार के प्रदर्शन विकसित किए।

ऑसिलोस्कोप

ऑसिलोस्कोप दो साइन-वेव वोल्टेज स्रोतों से जुड़ा हुआ है, जो डिस्प्ले पर सर्कल पैटर्न बनाता है।

प्रारंभिक राडार डिस्प्ले विभिन्न इनपुट के साथ अनुकूलित ऑसिलोस्कोप का उपयोग करते थे। आस्टसीलस्कप सामान्यतः इनपुट के रूप में अलग-अलग (या दोलनशील) वोल्टेज के तीन चैनल प्राप्त करता है और इस जानकारी को कैथोड रे ट्यूब पर प्रदर्शित करता है। आस्टसीलस्कप इनपुट वोल्टेज को बढ़ाता है और उन्हें दो विक्षेपण चुम्बकों और स्क्रीन पर स्थान बनाने वाले इलेक्ट्रॉन गन में भेजता है। चुंबक स्पॉट को क्षैतिज रूप से विस्थापित करता है, दूसरा लंबवत, और बंदूक के इनपुट से स्पॉट की चमक बढ़ जाती है या कम हो जाती है। तीन चैनलों में से प्रत्येक के लिए पूर्वाग्रह वोल्टेज स्रोत संचालक को शून्य बिंदु स्थित करने की अनुमति देता है।

रडार डिस्प्ले में, रडार प्राप्तकर्ता से आउटपुट संकेत को ऑसिलोस्कोप में तीन इनपुट चैनलों में से में फीड किया जाता है। प्रारंभिक प्रदर्शनों ने सामान्यतः वापसी को इंगित करने के लिए स्क्रीन पर स्पॉट को विस्थापित करने के लिए या तो एक्स चैनल या वाई चैनल को यह जानकारी भेजी थी। अधिक आधुनिक रडार सामान्यतः आकाश के बड़े क्षेत्र को आवरण करने के लिए घूर्णन या अन्यथा चलने वाले एंटीना का उपयोग करते थे, और इन स्थितियों में, एंटीना की यांत्रिक गति के लिए दास विद्युत्, सामान्यतः एक्स और वाई चैनलों को चमक चैनल में फीड किए जाने वाले रडार संकेत के साथ स्थानांतरित किया जाता है।

ए-स्कोप

चेन होम कैनोनिकल ए-स्कोप प्रणाली है। यह छवि स्टेशन से 15 से 30 मील के बीच की दूरी पर कई लक्ष्य ब्लिप दिखाती है। दूर बाईं ओर बड़ा ब्लिप रडार के अपने ट्रांसमीटर से बचा हुआ संकेत है; इस क्षेत्र में लक्ष्यों को नहीं देखा जा सका। मापन को आसान बनाने के लिए संकेत उलटा है।

मूल रडार डिस्प्ले, ए-स्कोप या ए-डिस्प्ले, लक्ष्य के लिए केवल सीमा दिखाता है, दिशा नहीं। इन्हें कभी-कभी 'दुरी स्कोप' के लिए आर-स्कोप के रूप में संदर्भित किया जाता है। द्वितीय विश्व युद्ध के समय प्रारंभिक रडार प्रणाली पर ए-स्कोप का उपयोग किया गया था, विशेष रूप सेमिनल चेन होम (सीएच) प्रणाली है।

ए-स्कोप का प्राथमिक इनपुट रडार से प्राप्त प्रवर्धित प्रतिफल संकेत था, जिसे डिस्प्ले के वाई-अक्ष में भेजा गया था। वापसी के कारण स्पॉट को नीचे की ओर (या कुछ मॉडलों पर ऊपर की ओर) विक्षेपित किया जाता है, जिससे ट्यूब पर लंबवत रेखाएँ खींची जाती हैं। इन पंक्तियों को ब्लिप (या पिप) के रूप में जाना जाता था। एक्स-अक्ष इनपुट सॉटूथ वोल्टेज जेनरेटर से जुड़ा था, जिसे समय आधार जनरेटर के रूप में जाना जाता है, जो रडार की नाड़ी पुनरावृत्ति आवृत्ति से मेल खाने के लिए डिस्प्ले पर स्पॉट को घुमाता है। यह ब्लिप्स को उनके प्राप्त होने के समय के अनुसार पूरे डिस्प्ले में फैला देता है। चूंकि संकेत का वापसी समय प्रकाश की गति से विभाजित लक्ष्य की दुगुनी दूरी से मेल खाता है, अक्ष के साथ दूरी सीधे किसी भी लक्ष्य की सीमा को इंगित करती है। यह सामान्यतः प्रदर्शन के ऊपर मापदंड के विरुद्ध मापा जाता था।[1]

चेन होम संकेत सामान्यतः समकोण पर व्यवस्थित एंटेना की जोड़ी पर प्राप्त होते थे। रेडियोगोनीओमीटर के रूप में ज्ञात उपकरण का उपयोग करके, संचालक लक्ष्य के असर को निर्धारित कर सकता है, और असर के साथ अपनी सीमा माप को जोड़कर, वे अंतरिक्ष में लक्ष्य का स्थान निर्धारित कर सकते हैं। प्रणाली में एंटेना का दूसरा स्थित भी था, जो प्राप्तकर्ता टावरों के साथ लंबवत रूप से विस्थापित था। अलग-अलग ऊंचाई पर इन एंटेना की जोड़ी का चयन करके और उन्हें रेडियोगोनीओमीटर से जोड़कर, वे लक्ष्य के ऊर्ध्वाधर कोण को निर्धारित कर सकते हैं, और इस प्रकार इसकी ऊंचाई का अनुमान लगा सकते हैं। चूंकि प्रणाली सीमा और ऊंचाई दोनों को माप सकती है, इसे कभी-कभी ऊंचाई-सीमा से एचआर-स्कोप के रूप में जाना जाता था।

एल-स्कोप मूल रूप से दो ए-स्कोप साथ रखे गए थे और लंबवत घुमाए गए थे। दो एंटेना से संकेत की ताकत की तुलना करके, ब्लिप की खुरदरी दिशा निर्धारित की जा सकती है। इस स्थिति में दो ब्लिप होते हैं, बड़ा मोटे तौर पर केंद्रित होता है और छोटा दाहिनी ओर होता है।

प्रारंभिक संयुक्त राज्य अमेरिका, नीदरलैंड और जर्मनी के राडार ने जे-स्कोप का उपयोग किया, जो ए-स्कोप के गोलाकार संस्करण जैसा था। ये डिस्प्ले डिस्प्ले फेस के चारों ओर कोण के रूप में होता है, इसके साथ रैखिक दूरी के विपरीत है। यह व्यवस्था ए-स्कोप के समान आकार के डिस्प्ले के साथ दुरी को पढ़ने में अधिक स्पष्टता की अनुमति देती है क्योंकि ट्रेस केवल क्षैतिज दूरी के अतिरिक्त पूर्ण परिधि का उपयोग करता है (इसलिए समय आधार π गुना अधिक है)।[1] जे-स्कोप डिस्प्ले का एक इलेक्ट्रो-मैकेनिकल संस्करण 1990 के दशक तक उपभोक्ता नौकायन गहराई मीटर पर सामान्य रहा है।

कोण माप की स्पष्टता में सुधार करने के लिए, प्रारंभिक राडार में लोब स्विचिंग की अवधारणा सामान्य हो गई थी। इस प्रणाली में, दो एंटेना का उपयोग किया जाता है, थोड़ा बाएँ और दाएँ, या ऊपर और नीचे, प्रणाली की दूरदर्शिता। प्राप्त संकेत शक्ति में भिन्न होगा, जो इस बात पर निर्भर करता है कि दोनों में से कौन सा एंटेना लक्ष्य पर अधिक बारीकी से इंगित किया गया था, और जब ऐन्टेना ठीक से संरेखित किया गया था तो सामान्य होगा। इसे प्रदर्शित करने के लिए, दोनों एंटेना यांत्रिक स्विच से जुड़े थे जो तेजी से दोनों के बीच स्विच करता था, जिससे डिस्प्ले में दो ब्लिप उत्पन्न होते थे। उन्हें अलग करने के लिए, दो प्राप्तकर्ताओं में से में देरी हुई थी, इसलिए यह दूसरे के दाईं ओर थोड़ा दिखाई देगा। संचालक तब एंटीना को आगे और पीछे घुमाएगा जब तक कि दोनों ब्लिप समान ऊंचाई के न हों। इसे कभी-कभी के-स्कोप के रूप में जाना जाता था।[2]

के-स्कोप का थोड़ा संशोधित संस्करण सामान्यतः वायु से वायु और भूतल-संचय के लिए उपयोग किया जाता था, विशेष रूप से हवाई अवरोधन रडार और एएसवी रडार - (वायु -सतह वेसल) में। इन प्रणालियों में, के-स्कोप को 90 डिग्री पर घुमा दिया गया था, इसलिए लंबी दूरियां दायरे को आगे दाईं ओर करने के अतिरिक्त ऊपर की ओर थीं। दो एंटेना में से का आउटपुट देरी के अतिरिक्त पलटनेवाला के माध्यम से भेजा गया था। इसका परिणाम यह हुआ कि दोनों ब्लिप्स को ही संकेतित सीमा पर, लंबवत आधार रेखा के दोनों ओर विस्थापित किया गया। इसने संचालक को तुरंत यह देखने की अनुमति दी कि किस दिशा में मुड़ना है; यदि दायीं ओर का झटका छोटा था, तो उन्हें दायीं ओर मुड़ने की जरूरत थी। इस प्रकार के डिस्प्ले को कभी-कभी एएसवी-स्कोप्स या एल-स्कोप्स के रूप में संदर्भित किया जाता था, चूंकि नामकरण सार्वभौमिक नहीं था।[1]

ए-स्कोप डिस्प्ले का आकार अलग-अलग होता है, किंतु 5 से 7 इंच विकर्ण का उपयोग प्रायः रडार डिस्प्ले पर किया जाता था। सीआरटी की 7 जेपीएक्स श्रृंखला (7जेपी1, 7जेपी4 और 7जेपी7 को मूल रूप से ए-स्कोप डिस्प्ले सीआरटी के रूप में डिजाइन किया गया था।

बी-स्कोप

बाईं ओर ई-स्कोप और दाईं ओर बी-स्कोप। ई-स्कोप दो अलग-अलग ऊंचाई पर दो ब्लिप दिखाता है, शीर्ष वाला भी थोड़ा समीप है। बी-स्कोप तीन ब्लिप्स दिखाता है, सबसे नज़दीकी हेड ऑन, दूसरा इसके दाहिनी ओर और थोड़ी लंबी दूरी, और तीसरा स्कैनिंग पैटर्न के दाहिने किनारे के पास।

एक बी-स्कोप या बी-स्कैन अंतरिक्ष का 2-डी टॉप डाउन प्रतिनिधित्व प्रदान करता है, जिसमें ऊर्ध्वाधर अक्ष सामान्यतः सीमा और क्षैतिज अक्ष दिगंश (कोण) का प्रतिनिधित्व करता है।[1] बी-स्कोप का प्रदर्शन रडार के अनुरेखण कोणों के बाहर विमान के दोनों किनारों पर हवाई क्षेत्र के क्षैतिज टुकड़े का प्रतिनिधित्व करता है।1950 और 60 के दशक में हवाई राडार में बी-स्कोप डिस्प्ले सामान्य थे, जिन्हें यांत्रिक रूप से एक तरफ से दूसरी तरफ और कभी-कभी ऊपर और नीचे भी स्कैन किया जाता था।

स्पॉट को ए-स्कोप के एक्स-अक्ष के समान फैशन में वाई-अक्ष में घुमाया गया था, जिसमें डिस्प्ले की दूरी अधिक दुरी का संकेत देती थी। यह संकेत यांत्रिक उपकरण द्वारा उत्पन्न होने वाले भिन्न वोल्टेज के साथ मिलाया गया था जो ऐन्टेना के वर्तमान क्षैतिज कोण पर निर्भर था। परिणाम अनिवार्य रूप से ए-स्कोप था जिसकी दुरी लाइन अक्ष प्रदर्शन के निचले भाग में शून्य बिंदु के आगे और पीछे घूमती है। रेडियो संकेत को तीव्रता चैनल में भेजा गया था, जो वापसी का संकेत देने वाले डिस्प्ले पर उज्ज्वल स्थान बनाता है।

एक ई-स्कोप अनिवार्य रूप से दुरी बनाम दिगंश के अतिरिक्त दुरी बनाम एलिवेशन प्रदर्शित करने वाला बी-स्कोप है।[1] संचालन में वे बी-स्कोप के समान हैं, नाम केवल ऊंचाई को इंगित करता है। ई-स्कोप सामान्यतः ऊंचाई खोजक के साथ उपयोग किए जाते हैं, जो हवाई रडार के समान होते हैं किंतु क्षैतिज रूप से लंबवत स्कैन करने के लिए बदल जाते हैं, उन्हें कभी-कभी एंटीना की गति के कारण नोडिंग रडार के रूप में भी जाना जाता है। प्रदर्शन और वास्तविक दुनिया के बीच अधिक स्पष्टता संबंध प्रदान करने के लिए प्रदर्शन ट्यूब को सामान्यतः 90 डिग्री घुमाया जाता था जिससे ऊंचाई अक्ष को लंबवत रखा जा सकता है । इन डिस्प्ले को दूरी-ऊंचाई सूचक या आरएचआई के रूप में भी संदर्भित किया जाता है, किंतु इन्हें सामान्यतः (भ्रामक रूप से) बी-स्कोप के रूप में भी संदर्भित किया जाता है।

एच-स्कोप बी-स्कोप अवधारणा का और संशोधन है, किंतु ऊंचाई के साथ-साथ दिगंश और सीमा को प्रदर्शित करता है। ऊंचाई की जानकारी लक्ष्य सूचक से दूसरी ब्लिप ऑफ़स्थित खींचकर छोटी दूरी से प्रदर्शित की जाती है, दो ब्लिप के बीच की रेखा का ढलान रडार के सापेक्ष ऊंचाई को इंगित करता है।[1] उदाहरण के लिए, यदि ब्लिप को सीधे दाहिनी ओर विस्थापित किया गया तो यह इंगित करेगा कि लक्ष्य रडार के समान ऊंचाई पर है। ऑफ़स्थित रेडियो संकेत को दो में विभाजित करके बनाया जाता है, फिर संकेत में से को थोड़ा विलंबित किया जाता है जिससे यह डिस्प्ले पर ऑफ़स्थित दिखाई दे। देरी के माध्यम से संकेत के समय में देरी से कोण को समायोजित किया गया था, ऐन्टेना की ऊर्ध्वाधर स्थिति के साथ अलग-अलग वोल्टेज द्वारा नियंत्रित होने वाली देरी की लंबाई । इस तरह के एलिवेशन डिस्प्ले को लगभग किसी भी अन्य डिस्प्ले में जोड़ा जा सकता है, और इसे प्रायः दोहरा बिंदु डिस्प्ले के रूप में संदर्भित किया जाता है।

सी-स्कोप

सी-स्कोप डिस्प्ले। लक्ष्य ऊपर और रडार के दाईं ओर है, किंतु सीमा प्रदर्शित नहीं होती है।

सी-स्कोप दिगंश बनाम ऊंचाई का बुल्सआई दृश्य प्रदर्शित करता है। ब्लिप प्रदर्शित किया गया था जो लक्ष्य की दिशा को राडार के केंद्र रेखा अक्ष से दूर दर्शाता है, या अधिक सामान्यतः, विमान या बंदूक से जुड़ा हुआ था। उन्हें यूके में मूविंग स्पॉट इंडिकेटर या फ्लाइंग स्पॉट इंडिकेटर के रूप में भी जाना जाता था, मूविंग स्पॉट लक्ष्य ब्लिप होता है। इन स्थितियों में दुरी को सामान्यतः अलग से प्रदर्शित किया जाता है, प्रायः एल-स्कोप के रूप में दूसरे डिस्प्ले का उपयोग किया जाता है।[1]

सी-स्कोप के लगभग समान जी-स्कोप है, जो लक्ष्य के लिए दुरी के ग्राफिकल प्रतिनिधित्व को ओवरले करता है।[1] यह सामान्यतः क्षैतिज रेखा द्वारा दर्शाया जाता है जो लक्ष्य संकेतक ब्लिप से बढ़कर पंख जैसी आकृति बनाता है। लक्ष्य के समीप होने का संकेत देने के लिए पंखों की लंबाई कम दूरी पर बढ़ी, जैसा कि नेत्रहीन रूप से देखने पर विमान के पंखों में होता है। शूट नाउ दुरी इंडिकेटर की भी प्रायः आपूर्ति की जाती है, जिसमें सामान्यतः डिस्प्ले के मध्य के दोनों ओर केंद्रित दो छोटी लंबवत रेखाएँ होती हैं। अवरोधन करने के लिए, पायलट अपने विमान को तब तक निर्देशित करता है जब तक ब्लिप केंद्रित नहीं हो जाता है, तब तक पहुंच जाता है जब तक पंख दुरी मार्करों के बीच के क्षेत्र को भर नहीं देते है। इस प्रदर्शन ने सामान्यतः बंदूक की नोक पर उपयोग की जाने वाली प्रणाली को फिर से बनाया, जहां पायलट लक्ष्य को विंगस्पैन में डायल करेगा और फिर जब पंखों ने उनकी दृष्टि में चक्र के अंदर क्षेत्र को भर देगा। इस प्रणाली ने पायलट को लक्ष्य की सीमा का अनुमान लगाने की अनुमति दी। इस स्थिति में, चूंकि, सीमा को सीधे रडार द्वारा मापा जा रहा है, और प्रदर्शन दो प्रणालियों के बीच समानता बनाए रखने के लिए ऑप्टिकल प्रणाली की नकल कर रहा था।

योजना स्थिति संकेतक

यह छवि हरे रंग में जहाज के आसपास के द्वीपों और जमीन के साथ उपयोग में आधुनिक पीपीआई डिस्प्ले दिखाती है। राडार की वर्तमान दिशा को उत्तर-पश्चिम की ओर इशारा करते हुए बिंदीदार रेखा के रूप में देखा जा सकता है।

पीपीआई डिस्प्ले रडार साइट के चारों ओर हवाई क्षेत्र का 2-डी सभी दौर डिस्प्ले प्रदान करता है। प्रदर्शन के केंद्र से बाहर की दूरी सीमा को इंगित करती है, और प्रदर्शन के चारों ओर का कोण लक्ष्य के लिए दिगंश है। रडार एंटीना की वर्तमान स्थिति को सामान्यतः केंद्र से डिस्प्ले के बाहर तक फैली रेखा द्वारा इंगित किया जाता है, जो वास्तविक समय में एंटीना के साथ घूमती है।[1] यह अनिवार्य रूप से बी-स्कोप है जिसे 360 डिग्री तक बढ़ाया गया है। पीपीआई डिस्प्ले सामान्यतः वही होता है जिसे लोग सामान्य रूप से रडार डिस्प्ले के रूप में सोचते हैं, और 1990 के दशक में रास्टर ग्राफिक्स की प्रारंभिक तक हवाई यातायात नियंत्रण में व्यापक रूप से उपयोग किया जाता था।

पीपीआई डिस्प्ले वास्तव में ऑपरेशन में ए-स्कोप के समान हैं, और रडार की प्रारंभिक के बाद काफी तेजी से दिखाई दिए। जैसा कि अधिकांश 2डी रडार डिस्प्ले के साथ होता है, रेडियो प्राप्तकर्ता का आउटपुट तीव्रता चैनल से जुड़ा हुआ था जिससे वापसी का संकेत देने वाला उज्ज्वल बिंदु उत्पन्न हो सकता है। ए-स्कोप में एक्स-अक्ष से जुड़ा सॉटूथ वोल्टेज जनरेटर स्पॉट को स्क्रीन के पार ले जाता है, जबकि पीपीआई में ऐसे दो जनरेटर के आउटपुट का उपयोग स्क्रीन के चारों ओर लाइन को घुमाने के लिए किया जाता है। कुछ प्रारंभिक प्रणालियां यांत्रिक थीं, प्रदर्शन ट्यूब की गर्दन के चारों ओर घूर्णन विक्षेपण कुंडल का उपयोग करते हुए, किंतु स्थिर विक्षेपण कुंडलियों की जोड़ी का उपयोग करके ऐसा करने के लिए आवश्यक विद्युत् विशेष रूप से जटिल नहीं थे, और 1940 के दशक की प्रारंभिक में उपयोग में थे।

बीटा स्कैन स्कोप

एक बीटा स्कैन डिस्प्ले।

स्पष्ट दृष्टिकोण रडार प्रणाली के लिए विशेषज्ञ बीटा स्कैन स्कोप का उपयोग किया गया था। यह ही प्रदर्शन पर दो पंक्तियों को प्रदर्शित करता है, ऊपरी (सामान्यतः ) ऊर्ध्वाधर दृष्टिकोण (ग्लाइड स्लोप) को प्रदर्शित करता है, और निचला क्षैतिज दृष्टिकोण प्रदर्शित करता है। मार्कर रनवे पर वांछित स्पर्श बिंदु को इंगित करता है, और प्रायः इस स्थान को इंगित करने के लिए लाइनों को स्क्रीन के मध्य की ओर झुका दिया जाता है। एकल विमान का ब्लिप भी प्रदर्शित किया जाता है, दोनों लाइनों पर लगाया जाता है, संकेत अलग-अलग एंटेना से उत्पन्न होते हैं। दृष्टिकोण की केंद्र रेखा से विचलन देखा जा सकता है और आसानी से पायलट को रिले किया जा सकता है।

छवि में, डिस्प्ले का ऊपरी भाग लंबवत स्थिति दिखाता है, और निचला भाग क्षैतिज स्थिति दिखाता है। लंबवत में, दो विकर्ण रेखाएं वांछित ग्लाइडलोप (ऊपरी) और न्यूनतम ऊंचाई दृष्टिकोण (निचला) दिखाती हैं। विमान ने ग्लाइडलोप के नीचे अपना दृष्टिकोण प्रारंभ किया और लैंडिंग से ठीक पहले इसे पकड़ लिया। उचित लैंडिंग बिंदु को बाएं छोर पर क्षैतिज रेखा द्वारा दिखाया गया है। निचला प्रदर्शन विमान को दृष्टिकोण लाइन के बाईं ओर से प्रारंभ करता है और फिर उसकी ओर निर्देशित होता है।

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 "पारिभाषिक शब्दावली". Radar - Operational Characteristics of Radar Classified by Tactical Application. pp. 109–114. Retrieved April 1, 2016.
  2. सेना रडार. Tommies Guides. 2014. p. 223. ISBN 9781908336842.
  • Raju, G. S. N. (2008). Radar engineering and fundamentals of navigational aids. New Delhi: I. K. International Publishing House Pvt Ltd. pp. 54, 237, 241, 252–259. ISBN 978-81-906942-1-6.
  • Department of the Army (1985). Radar set AN/TPS-25, AN/TPS-25A, and AN/TPS-25(XE-2).


अग्रिम पठन


बाहरी संबंध