क्लोज्ड लूप कंट्रोलर
क्लोज्ड लूप कंट्रोलर या फीडबैक कंट्रोलर एक प्रकार का कंट्रोलिंग लूप है, जो ओपन-लूप कंट्रोलर या नाॅन फीडबैक कंट्रोलर के विपरीत, फीडबैक को सम्मिलित करता है।
क्लोज्ड लूप कंट्रोलर विशेष नियंत्रण स्थितियों या ऋणात्मक फीडबैक के लिए गतिशील प्रणाली का अवलोकन करने वाली तथा नियंत्रित करने के लिए फीडबैक का उपयोग करता है। इसका नाम किसी सिस्टम में सूचना पथ के स्थान पर आता है, इस प्रकार की प्रक्रिया में इनपुट (जैसे, विद्युत मोटर पर लागू वोल्टेज) का प्रक्रिया आउटपुट (जैसे, मोटर की गति या टॉर्क) पर प्रभाव पड़ता है, जिसे सेंसर की सहायता से मापा और संसाधित किया जाता है। इसके आधार पर कोई कंट्रोलर परिणाम (नियंत्रण संकेत) को प्रक्रिया में इनपुट के रूप में वापस फीड किया जाता है, जिससे लूप बंद हो जाता है।
रैखिक फीडबैक सिस्टम की स्थिति में, सेटपॉइंट (नियंत्रण प्रणाली) (एसपी) पर किसी चर को विनियमित करने के प्रयास में सेंसर, नियंत्रण एल्गोरिदम और एक्चुएटर्स सहित कंट्रोलर लूप की व्यवस्था की जाती है। वर्तमान समय में इसका उपयोग उदाहरण के लिए सड़क वाहन पर क्रूज़ नियंत्रण में किया जाता है, जहाँ पहाड़ियों पर जैसे बाहरी प्रभावों के कारण गति में परिवर्तन होता है, और ड्राइवर के पास वांछित निर्धारित गति को परिवर्तित करने की क्षमता होती है। कंट्रोलर में पीआईडी एल्गोरिदम वाहन के इंजन के पावर आउटपुट को नियंत्रित करके, न्यूनतम देरी या ओवरशूट (संकेत) के साथ, वास्तविक गति को इष्टतम तरीके से वांछित गति पर पुनर्स्थापित करता है।
इस प्रकार की नियंत्रण प्रणालियाँ जिनमें इनके परिणामों की कुछ समझ सम्मिलित होती है जिन्हें वे प्राप्त करने का प्रयास कर रहे हैं, तथा इसके आधार पर ही फीडबैक का उपयोग कर रहे हैं और कुछ सीमा तक अलग-अलग परिस्थितियों के अनुकूल हो सकते हैं। ओपन-लूप कंट्रोलर प्रणालियाँ फीडबैक का उपयोग नहीं करती हैं, और केवल पूर्व-व्यवस्थित विधियों से चलती हैं।
ओपन-लूप नियंत्रकों की तुलना में क्लोज्ड लूप कंट्रोलर के निम्नलिखित लाभ हैं:
- अशांति अस्वीकृति (जैसे ऊपर क्रूज़ नियंत्रण उदाहरण में पहाड़ियाँ)।
- गणितीय मॉडल में अनिश्चितताओं के साथ भी प्रदर्शन की गारंटी, जब मॉडल संरचना वास्तविक प्रक्रिया से पूर्ण रूप से मेल नहीं खाती है और मॉडल पैरामीटर सटीक नहीं हैं।
- अस्थिरता प्रक्रियाओं को स्थिर किया जा सकता है।
- पैरामीटर विविधताओं के प्रति संवेदनशीलता कम हो गई हैं।
- उत्तम संदर्भ के लिए ट्रैकिंग प्रदर्शन का उपयोग होता हैं।
कुछ प्रणालियों में, क्लोज्ड लूप और खुले-लूप नियंत्रण का साथ उपयोग किया जाता है। ऐसी प्रणालियों में, ओपन-लूप नियंत्रण को फीडफॉरवर्ड नियंत्रण)नियंत्रण) कहा जाता है और यह संदर्भ ट्रैकिंग प्रदर्शन को और उत्तम बनाने का काम करता है।
एक सामान्य क्लोज्ड लूप कंट्रोलर आर्किटेक्चर पीआईडी कंट्रोलर है।
ओपेन-लूप और क्लोज्ड लूप
क्लोज्ड लूप ट्रांस्फर फ़ंक्शन
सिस्टम y(t) का आउटपुट संदर्भ मान r(t) के साथ तुलना करने के लिए सेंसर माप F के माध्यम से वापस फीड किया जाता है। कंट्रोलर सी तब नियंत्रण P के अनुसार सिस्टम में इनपुट u को परिवर्तित करने के लिए संदर्भ और आउटपुट के बीच त्रुटि ई (अंतर) लेता है। यह चित्र में दिखाया गया है। इस प्रकार का कंट्रोलर क्लोज्ड लूप कंट्रोलर या फीडबैक कंट्रोलर है।
इसे एकल-इनपुट-एकल-आउटपुट (SISO) नियंत्रण प्रणाली कहा जाता है, जिससे इसके अधिक इनपुट/आउटपुट वाले MIMO (अर्ताथ, मल्टी-इनपुट-मल्टी-आउटपुट) सिस्टम साधारण हैं। ऐसी स्थितियों में चर को सरल अदिश (गणित) मानों के अतिरिक्त समन्वय सदिश के माध्यम से दर्शाया जाता है। कुछ वितरित पैरामीटर सिस्टम के लिए वेक्टर अनंत-आयाम (वेक्टर स्थान) (सामान्यतः कार्य) हो सकते हैं।
यदि हम कंट्रोलर C, प्लांट P, और सेंसर F को रैखिक और समय-अपरिवर्तनीय मानते हैं (अर्ताथ, उनके स्थानांतरण फ़ंक्शन C (s), P (s), और F (s) के तत्व समय पर निर्भर नहीं होते हैं) , उपरोक्त प्रणालियों का विश्लेषण वेरिएबल्स पर लाप्लास परिवर्तन का उपयोग करके किया जा सकता है। यह निम्नलिखित संबंध देता है:
Y(s) को R(s) के रूप में हल करने पर परिणाम मिलता है
इसे सिस्टम के क्लोज्ड-लूप ट्रांसफर फ़ंक्शन के रूप में जाना जाता है। अंश R से Y तक आगे (ओपन-लूप) लाभ है, और हर फीडबैक लूप के चारों ओर जाने में प्लस लाभ है, तथाकथित लूप लाभ को प्रदर्शित करता हैं। इस प्रकार यदि , अर्थात, इसमें s, और if के प्रत्येक मान के साथ बड़ा मानदंड (गणित) है, जिसके आधार पर , तो Y(s) लगभग R(s) के बराबर है और आउटपुट संदर्भ इनपुट को बारीकी से ट्रैक करता है।
पीआईडी फीडबैक नियंत्रण
आनुपातिक-अभिन्न-व्युत्पन्न कंट्रोलर (पीआईडी कंट्रोलर) कंट्रोलर लूप फीडबैक तंत्र नियंत्रण तकनीक है जिसका व्यापक रूप से नियंत्रण प्रणालियों में उपयोग किया जाता है।
एक पीआईडी कंट्रोलर लगातार त्रुटि मान की गणना करता है e(t) वांछित सेटपॉइंट (नियंत्रण प्रणाली) और मापा प्रक्रिया चर के बीच अंतर के रूप में और आनुपातिक नियंत्रण, अभिन्न और व्युत्पन्न शर्तों के आधार पर सुधार लागू होता है। पीआईडी आनुपातिक-अभिन्न-व्युत्पन्न के लिए प्रारंभिकवाद है, जो नियंत्रण संकेत उत्पन्न करने के लिए त्रुटि संकेत पर काम करने वाले तीन शब्दों का संदर्भ देता है।
सैद्धांतिक समझ और अनुप्रयोग 1920 के दशक से है, और वे लगभग सभी एनालॉग नियंत्रण प्रणालियों में लागू किए गए हैं; मूल रूप से यांत्रिक नियंत्रकों में, और फिर असतत इलेक्ट्रॉनिक्स का उपयोग करके और बाद में औद्योगिक प्रक्रिया वाले कंप्यूटरों में। पीआईडी कंट्रोलर संभवतः सबसे अधिक उपयोग किया जाने वाला फीडबैक नियंत्रण डिज़ाइन है।
अगर u(t) सिस्टम को भेजा गया नियंत्रण संकेत है, y(t) मापा गया आउटपुट है और r(t) वांछित आउटपुट है, और e(t) = r(t) − y(t) ट्रैकिंग त्रुटि है, पीआईडी कंट्रोलर का सामान्य रूप होता है
वांछित क्लोज्ड लूप गतिशीलता तीन मापदंडों को समायोजित करके प्राप्त की जाती है KP, KI और KD, अक्सर ट्यूनिंग द्वारा और किसी प्लांट मॉडल के विशिष्ट ज्ञान के बिना पुनरावृत्त रूप से। स्थिरता को अक्सर केवल आनुपातिक शब्द का उपयोग करके सुनिश्चित किया जा सकता है। अभिन्न शब्द कदम गड़बड़ी (अक्सर प्रक्रिया नियंत्रण में हड़ताली विशिष्टता) की अस्वीकृति की अनुमति देता है। व्युत्पन्न शब्द का उपयोग प्रतिक्रिया को भिगोने या आकार देने के लिए किया जाता है। पीआईडी कंट्रोलर नियंत्रण प्रणालियों का सबसे अच्छी तरह से स्थापित वर्ग हैं: हालाँकि, उनका उपयोग कई अधिक जटिल मामलों में नहीं किया जा सकता है, खासकर अगर एमआईएमओ सिस्टम पर विचार किया जाता है।
लाप्लास परिवर्तन को लागू करने से परिवर्तित पीआईडी कंट्रोलर समीकरण प्राप्त होता है
पीआईडी कंट्रोलर स्थानांतरण फ़ंक्शन के साथ
क्लोज्ड लूप सिस्टम में पीआईडी कंट्रोलर को ट्यून करने के उदाहरण के रूप में H(s), द्वारा दिए गए प्रथम क्रम के पौधे पर विचार करें
कहाँ A और TP कुछ स्थिरांक हैं. प्लांट आउटपुट को वापस फीड किया जाता है
कहाँ TF भी स्थिरांक है. अब अगर हम सेट करें , KD = KTD, और , हम पीआईडी कंट्रोलर स्थानांतरण फ़ंक्शन को श्रृंखला के रूप में व्यक्त कर सकते हैं
plugging P(s), F(s), और C(s) क्लोज्ड लूप स्थानांतरण फ़ंक्शन में H(s), हम इसे सेटिंग द्वारा पाते हैं
H(s) = 1. इस उदाहरण में इस ट्यूनिंग के साथ, सिस्टम आउटपुट बिल्कुल संदर्भ इनपुट का अनुसरण करता है।
हालाँकि, व्यवहार में, शुद्ध विभेदक न तो भौतिक रूप से साकार करने योग्य है और न ही वांछनीय है[1] सिस्टम में शोर और अनुनाद मोड के प्रवर्धन के कारण। इसलिए, इसके बजाय लीड-लैग कम्पेसाटर | चरण-लीड कम्पेसाटर प्रकार दृष्टिकोण या कम-पास रोल-ऑफ वाले विभेदक का उपयोग किया जाता है।
संदर्भ
- ↑ Ang, K.H.; Chong, G.C.Y.; Li, Y. (2005). "पीआईडी नियंत्रण प्रणाली विश्लेषण, डिजाइन और प्रौद्योगिकी" (PDF). IEEE Transactions on Control Systems Technology. 13 (4): 559–576. doi:10.1109/TCST.2005.847331. S2CID 921620. Archived (PDF) from the original on 2013-12-13.
{{cite journal}}
: zero width space character in|title=
at position 8 (help)