समुपयोग संबंध

From Vigyanwiki
Revision as of 14:07, 7 July 2023 by alpha>Neetua08
तीन तत्वों के सत्ता स्थापित का हस्से आरेख, समावेशन द्वारा आंशिक क्रम (सेट सिद्धांत)।

गणित में, विशेष रूप से ऑर्डर सिद्धांत में, आंशिक रूप से ऑर्डर किए गए सेट का कवरिंग संबंध द्विआधारी संबंध है जो तुलनात्मक तत्वों के बीच होता है जो तत्काल पड़ोसी होते हैं। कवरिंग रिलेशन का उपयोग आमतौर पर हासे आरेख के माध्यम से आंशिक क्रम को ग्राफिक रूप से व्यक्त करने के लिए किया जाता है।

परिभाषा

होने देना आंशिक क्रम वाला सेट बनें . हमेशा की तरह, चलो संबंध पर हो ऐसा है कि अगर और केवल अगर और .

होने देना और के तत्व हों .

तब कवर , लिखा हुआ , अगर और कोई तत्व नहीं है ऐसा है कि . समान रूप से, कवर यदि आंशिक रूप से ऑर्डर किया गया सेट#अंतराल दो-तत्व सेट है .

कब , कहते है कि का आवरण है . कुछ लेखक ऐसी किसी जोड़ी को दर्शाने के लिए कवर शब्द का भी उपयोग करते हैं कवरिंग रिलेशन में.

उदाहरण

  • एक परिमित रैखिक रूप से क्रमित सेट {1, 2, ..., n} में, i + 1, 1 और n - 1 के बीच सभी i के लिए i को कवर करता है (और कोई अन्य कवरिंग संबंध नहीं हैं)।
  • सेट एस के पावर सेट के बूलियन बीजगणित (संरचना) में, एस का उपसमुच्चय बी, एस के उपसमुच्चय ए को कवर करता है यदि और केवल यदि ए से तत्व जोड़कर बी प्राप्त किया जाता है जो ए में नहीं है।
  • यंग की जाली में, सभी गैर-नकारात्मक पूर्णांकों के विभाजन (संख्या सिद्धांत) द्वारा गठित, विभाजन λ विभाजन μ को कवर करता है यदि और केवल यदि λ का यंग आरेख अतिरिक्त सेल जोड़कर μ के यंग आरेख से प्राप्त किया जाता है।
  • तामरी जाली के आवरण संबंध को दर्शाने वाला हस्से आरेख सहफलक का एन-कंकाल है।
  • किसी भी परिमित वितरण जालक का आवरण संबंध माध्यिका ग्राफ बनाता है।
  • सामान्य कुल क्रम ≤ के साथ वास्तविक संख्याओं पर, कवर सेट खाली है: कोई भी संख्या दूसरे को कवर नहीं करती है।

गुण

  • यदि आंशिक रूप से ऑर्डर किया गया सेट परिमित है, तो इसका कवरिंग संबंध आंशिक ऑर्डर संबंध की सकर्मक कमी है। इसलिए ऐसे आंशिक रूप से क्रमित सेटों को उनके हस्से आरेखों द्वारा पूरी तरह से वर्णित किया गया है। दूसरी ओर, सघन क्रम में, जैसे कि मानक क्रम वाली परिमेय संख्याएँ, कोई भी तत्व दूसरे को कवर नहीं करता है।

संदर्भ

  • Knuth, Donald E. (2006), The Art of Computer Programming, Volume 4, Fascicle 4, Addison-Wesley, ISBN 0-321-33570-8.
  • Stanley, Richard P. (1997), Enumerative Combinatorics, vol. 1 (2nd ed.), Cambridge University Press, ISBN 0-521-55309-1.
  • Brian A. Davey; Hilary Ann Priestley (2002), Introduction to Lattices and Order (2nd ed.), Cambridge University Press, ISBN 0-521-78451-4, LCCN 2001043910.