विशेष सापेक्षता (एसआर) में त्वरण, न्यूटोनियन यांत्रिकी की तरह, समय के संबंध में वेग के व्युत्पन्न द्वारा अनुसरण किया जाता है। लोरेंत्ज़ परिवर्तन और समय विस्तार के कारण, समय और दूरी की अवधारणाएँ अधिक सम्मिश्र हो जाती हैं, जिससे त्वरण की अधिक सम्मिश्र परिभाषाएँ भी सामने आती हैं। फ्लैट मिन्कोवस्की दिक्काल के सिद्धांत के रूप में एसआर त्वरण की उपस्थिति में मान्य रहता है, क्योंकि सामान्य सापेक्षता (जीआर) की आवश्यकता केवल तब होती है जब ऊर्जा-संवेग टेंसर (जो मुख्य रूप से अपरिवर्तनीय द्रव्यमान द्वारा निर्धारित होता है) के कारण वक्रदिक्काल होता है।, चूँकि पृथ्वी या इसके आसपास के क्षेत्र में दिक्काल वक्रता की मात्रा विशेष रूप से अधिक नहीं है, एसआर अधिकांश व्यावहारिक उद्देश्यों के लिए मान्य है, जैसे कि कण त्वरक में प्रयोग किया जाता है।[1]
कोई तीन स्थानिक आयामों (तीन-त्वरण या समन्वय त्वरण) में सामान्य त्वरण के लिए परिवर्तन सूत्र प्राप्त कर सकता है जैसा कि संदर्भ के बाहरी जड़त्वीय फ्रेम में मापा जाता है, साथ ही कोमोविंग एक्सेलेरोमीटर द्वारा मापा गया उचित त्वरण के विशेष उपस्तिथि के लिए भी उपयोग किया जाता है। अन्य उपयोगी औपचारिकता चार-त्वरण है, क्योंकि इसके अवयवों को लोरेंत्ज़ परिवर्तन द्वारा विभिन्न जड़त्वीय फ़्रेमों में जोड़ा जा सकता है। इसके अतिरिक्त गति के समीकरण भी बनाए जा सकते हैं जो त्वरण और बल को जोड़ते हैं। पिंडों के त्वरण के अनेक रूपों और उनकी घुमावदार विश्व रेखाओं के समीकरण अभिन्न द्वारा इन सूत्रों का अनुसरण करते हैं। प्रसिद्ध विशेष उपस्तिथि निरंतर अनुदैर्ध्य उचित त्वरण या एकसमान गोलाकार गति के लिए अतिशयोक्तिपूर्ण गति (सापेक्षता) हैं। अंततः, विशेष सापेक्षता के संदर्भ में गैर-जड़त्वीय संदर्भ फ्रेम में इन घटनाओं का वर्णन करना भी संभव है, उचित संदर्भ फ्रेम (फ्लैट दिक्काल) देखें। ऐसे फ़्रेमों में, प्रभाव उत्पन्न होते हैं जो सजातीय गुरुत्वाकर्षण क्षेत्र के अनुरूप होते हैं, जिनमें सामान्य सापेक्षता में वक्रदिक्काल के वास्तविक, अमानवीय गुरुत्वाकर्षण क्षेत्रों के साथ कुछ औपचारिक समानताएं होती हैं। अतिशयोक्तिपूर्ण गति के उपस्तिथि में कोई रिंडलर निर्देशांक का उपयोग कर सकता है, समान गोलाकार गति के उपस्तिथि में कोई बोर्न निर्देशांक का उपयोग कर सकता है।
न्यूटोनियन यांत्रिकी और एसआर दोनों के अनुसार, तीन-त्वरण या समन्वय त्वरण समन्वय समय के संबंध में वेग का पहला व्युत्पन्न है और समन्वय समय के संबंध में स्थान के दूसरे व्युत्पन्न है |
.
चूँकि , विभिन्न जड़त्वीय फ़्रेमों में मापे गए तीन-त्वरणों के मध्य संबंध के संदर्भ में सिद्धांत अपनी भविष्यवाणियों में बहुत भिन्न हैं। न्यूटोनियन यांत्रिकी में, गैलीलियन परिवर्तन के अनुसार समय के द्वारा निरपेक्ष है तथा, इसलिए इससे प्राप्त तीन-त्वरण सभी जड़त्वीय फ़्रेमों में भी समान है:[4]
.
इसके विपरीत एसआर में, और दोनों लोरेंत्ज़ परिवर्तन पर निर्भर करते हैं, इसलिए तीन-त्वरण भी और इसके अवयव विभिन्न जड़त्वीय फ़्रेमों में भिन्न होते हैं। जब फ़्रेमों के मध्य सापेक्ष वेग को लोरेंत्ज़ कारक के रूप में के साथ द्वारा x-दिशा में निर्देशित होता है तब लोरेंत्ज़ परिवर्तन का रूप होता है
त्रि-त्वरण के परिवर्तन का पता लगाने के लिए,किसी को लोरेंत्ज़ परिवर्तन के स्थानिक निर्देशांक और को और , के संबंध में भिन्न करना होगा | जिससे मध्य में त्रि-वेग (जिसे वेग-जोड़ सूत्र भी कहा जाता है) का परिवर्तन होता है जहाँ और अनुसरण करता है, और अंततः इसके संबंध में और भेदभाव होता है और के मध्य तीन-त्वरण का परिवर्तन और अनुसरण करता है। (1a), से प्रारंभ यह प्रक्रिया वह परिवर्तन देती है जहां त्वरण वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) होते हैं:[6][7][8][9][H 2][H 13]
(1c)
या (1b) से प्रारंभ यह प्रक्रिया वेग और त्वरण की इच्छानुसार दिशाओं के सामान्य उपस्तिथि के लिए परिणाम देती है:[10][11]
(1d)
इसका अर्थ है, यदि सापेक्ष वेग के साथ दो जड़त्वीय फ्रेम और हैं, तब में क्षणिक वेग के साथ किसी वस्तु का त्वरण मापा जाता है, जबकि '' में ' उसी वस्तु का त्वरण है और क्षणिक वेग है। वेग जोड़ सूत्रों की तरह, यह त्वरण परिवर्तन भी गारंटी देते हैं कि त्वरित वस्तु की परिणामी गति कभी भी प्रकाश की गति तक पहुंच सकती या उससे अधिक नहीं हो सकती है ।
यदि तीन-सदिश के स्थान पर चार-सदिश का उपयोग किया जाता है, अर्थात् चार-स्थिति के रूप में और को चार-वेग के रूप में उपयोग किया जाता है , तब फिर किसी वस्तु का चार-त्वरण के संबंध में विभेदन करके प्राप्त किया जाता है समन्वय समय के अतिरिक्त उचित समय पर :[12][13][14]
(2a)
जहाँ वस्तु का तीन-त्वरण है और यह परिमाण का क्षणिक तीन-वेग है तथा संगत लोरेंत्ज़ कारक के साथ . यदि केवल स्थानिक भाग पर विचार किया जाता है, और जब वेग को x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है, अभिव्यक्ति कम हो जाती है:[15][16]
जब पहले चर्चा की गई तीन-त्वरण के विपरीत, चार-त्वरण के लिए नया परिवर्तन प्राप्त करना आवश्यक नहीं है, क्योंकि सभी चार-सदिशों की तरह, और के अवयव के सापेक्ष गति के साथ दो जड़त्वीय फ़्रेमों में होते है (1a, 1b) के अनुरूप लोरेंत्ज़ परिवर्तन द्वारा जुड़े हुए हैं. चार-सदिशों की अन्य संपत्ति आंतरिक उत्पाद या उसका परिमाण की अपरिवर्तनीयता है, जो इस उपस्तिथि में देता है:[16][13][17]
इस प्रकार अनंत छोटी अवधियों में सदैव जड़त्वीय फ्रेम होता है, जिसका क्षणिक वेग त्वरित शरीर के समान होता है, और जिसमें लोरेंत्ज़ परिवर्तन होता है। इन फ़्रेमों के संगत वाले तीन-त्वरण को सीधे एक्सेलेरोमीटर द्वारा मापा जा सकता है, और इसे उचित त्वरण [18][H 12] या बाकी त्वरण कहा जाता है.[19][H 10] में का संबंध क्षणिक जड़त्वीय फ़्रेमों में और बाहरी जड़त्वीय फ्रेम को में मापा जाता है जो (1c, 1d) साथ , , और से अनुसरण करता है. तो (1c) के संदर्भ में , जब वेग x-दिशा में निर्देशित होता है और जब केवल त्वरण के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) वेग पर विचार किया जाता है, तो यह निम्नानुसार है:[12][19][18][H 12][H 10]
(3a)
द्वारा सामान्यीकृत (1d) की इच्छानुसार दिशाओं के लिए परिमाण का :[20][21][17]
इस प्रकार चार-त्वरण के परिमाण से भी घनिष्ठ संबंध है: चूंकि यह अपरिवर्तनीय है, इसे क्षणिक जड़त्वीय फ्रेम में निर्धारित किया जा सकता है , जिसमें और से यह तक इस प्रकार अनुसरण करता है :[19][12][22][H 14]
.
(3b)
इस प्रकार चार-त्वरण का परिमाण उचित त्वरण के परिमाण से मेल खाता है। इसे (2b) के साथ मिलाकर मध्य संबंध के निर्धारण के लिए वैकल्पिक विधि में और में दिया गया है र्थात्[13][17]
किस से (3a) फिर से अनुसरण करता है जब वेग को x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है।
स्थिर द्रव्यमान मानकर , चार-बल त्रि-बल के कार्य के रूप में चार-त्वरण (2a) से द्वारा संबंधित है, इस प्रकार:[23][24]
(4a)
वेग की इच्छानुसार दिशाओं के लिए तीन-बल और तीन-त्वरण के मध्य संबंध इस प्रकार है[25][26][23]
(4b)
जब वेग को द्वारा x-दिशा में निर्देशित किया जाता है और केवल वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) त्वरण पर विचार किया जाता है[27][26][23]Cite error: Closing </ref> missing for <ref> tag[28]
अनुदैर्ध्य द्रव्यमान के रूप में,
अनुप्रस्थ द्रव्यमान के रूप में।
रिश्ता (4b) तीन-त्वरण और तीन-बल के मध्य गति के समीकरण से भी प्राप्त किया जा सकता है[29][25][H 4]
(4d)
जहाँ तीन-गति है. में और में के मध्य त्रि-बल का संगत परिवर्तन (जब फ्रेम के मध्य सापेक्ष वेग x-दिशा में द्वारा निर्देशित होता है और केवल त्वरण के समानांतर (x-दिशा) होता है या वेग के लिए लंबवत (y-, z-दिशा) पर विचार किया जाता है) , , , के लिए प्रासंगिक परिवर्तन सूत्रों के प्रतिस्थापन द्वारा अनुसरण किया जाता है , या लोरेंत्ज़ से चार-बल के रूपांतरित घटक, परिणाम के साथ:[29][30][24][H 1][H 13]
(4e)
या की इच्छानुसार दिशाओं के लिए सामान्यीकृत, साथ ही परिमाण के साथ :[31][32]
(4f)
उचित त्वरण और उचित बल
गतिशील स्प्रिंग संतुलन द्वारा मापे गए क्षणिक जड़त्वीय फ्रेम में बल को उचित बल कहा जा सकता है।[33][34] यह और के साथ -साथ और को सेट करके (4e, 4f) का अनुसरण करता है। इस प्रकार (4e) जहां केवल त्वरण वेग के समानांतर (x-दिशा) या लंबवत (y-, z-दिशा) होता है माने जाते है कि इसमें त्वरण पर विचार किया जाता है:[35][33][34]
(5a)
परिमाण का की इच्छानुसार दिशाओं के लिए 4f) द्वारा सामान्यीकृत :[35][36]
चूँकि क्षणिक जड़त्व फ़्रेमों में चार-बल और चार-त्वरण होते हैं, समीकरण (4a) न्यूटोनियन संबंध उत्पन्न करता है , इसलिए (3a, 4c, 5a) को संक्षेप में प्रस्तुत किया जा सकता है[37]
(5b)
इसके द्वारा, अनुप्रस्थ द्रव्यमान की ऐतिहासिक परिभाषाओं में स्पष्ट विरोधाभास है समझाया जा सकता है.[38] आइंस्टीन (1905) ने त्रि-त्वरण और उचित बल के मध्य संबंध का वर्णन किया[H 3]
,
जबकि लोरेंत्ज़ (1899, 1904) और प्लैंक (1906) ने तीन-त्वरण और तीन-बल के मध्य संबंध का वर्णन किया
गति के समीकरणों के एकीकरण से क्षणिक जड़त्वीय फ़्रेमों के अनुक्रम के अनुरूप त्वरित पिंडों की घुमावदार विश्व रेखाएं प्राप्त होती हैं (यहां, अभिव्यक्ति घुमावदार मिन्कोव्स्की आरेखों में विश्व रेखाओं के रूप से संबंधित है, जिसे सामान्य सापेक्षता के वक्रदिक्काल के साथ भ्रमित नहीं किया जाना चाहिए)। इसके संबंध में, घड़ी अभिधारणा की तथाकथित घड़ी परिकल्पना पर विचार करना होगा:[39][40] तथा चलने वाली घड़ियों का उचित समय त्वरण से स्वतंत्र होता है, अर्थात, इन घड़ियों का समय विस्तार, जैसा कि बाहरी जड़त्वीय फ्रेम में देखा जाता है, केवल उस फ्रेम के संबंध में इसके सापेक्ष वेग पर निर्भर करता है। घुमावदार विश्व रेखाओं के दो सरल उपस्तिथि अब समीकरण के एकीकरण (3a) द्वारा प्रदान किए गए हैं उचित त्वरण के लिए:
b) स्थिर, अनुप्रस्थ उचित त्वरण द्वारा (3a) को अभिकेन्द्रीय त्वरण के रूप में देखा जा सकता है,[13] जो समान घूर्णन में किसी पिंड की विश्व रेखा की ओर ले जाता है |[43][44]
(6b)
जहाँ स्पर्शरेखीय गति है, कक्षीय त्रिज्या है, समन्वय समय के फलन के रूप में कोणीय वेग है, और को उचित कोणीय वेग के रूप में दर्शाया जाता है .
ट्रिपल वक्रों की विभेदक ज्यामिति का उपयोग करके घुमावदार विश्व रेखाओं का वर्गीकरण प्राप्त किया जा सकता है, जिसे उचित संदर्भ फ्रेम (फ्लैट दिक्काल) या दिक्काल फ्रेनेट-सेरेट समीकरण|दिक्काल फ्रेनेट-सेरेट सूत्रों द्वारा व्यक्त किया जा सकता है।[45] विशेष रूप से, यह दिखाया जा सकता है कि अतिपरवलयिक गति और एकसमान वृत्तीय गति, स्थिर वक्रता और वक्र के मरोड़ वाली गति के विशेष उपस्तिथि हैं,[46] बोर्न कठोरता की स्थिति को संतुष्ट करना।[H 9][H 15] किसी पिंड को बोर्न रिजिड भी कहा जाता है यदि त्वरण के समय इसकी अनंत रूप से भिन्न की गई विश्व रेखाओं या बिंदुओं के मध्य समिष्ट समय की दूरी स्थिर रहती है।
जड़त्वीय फ़्रेमों के अतिरिक्त , इन त्वरित गतियों और घुमावदार विश्व रेखाओं को त्वरित या वक्रीय निर्देशांक का उपयोग करके भी वर्णित किया जा सकता है। इस तरह से स्थापित उचित संदर्भ फ्रेम फर्मी निर्देशांक से निकटता से संबंधित है।[47][48] उदाहरण के लिए, अतिपरवलयिक रूप से त्वरित संदर्भ फ्रेम के निर्देशांक को कभी-कभी रिंडलर निर्देशांक भी कहा जाता है, या समान रूप से घूमने वाले संदर्भ फ्रेम के निर्देशांक को घूर्णन बेलनाकार निर्देशांक (या कभी-कभी बोर्न निर्देशांक) कहा जाता है। तुल्यता सिद्धांत के संदर्भ में, इन त्वरित फ़्रेमों में उत्पन्न होने वाले प्रभाव सजातीय, काल्पनिक गुरुत्वाकर्षण क्षेत्र में प्रभावों के अनुरूप होते हैं। इस तरह यह देखा जा सकता है, कि एसआर में त्वरित फ़्रेमों का उपयोग महत्वपूर्ण गणितीय संबंध उत्पन्न करता है, जो (आगे विकसित होने पर) सामान्य सापेक्षता में वक्रदिक्काल के संदर्भ में वास्तविक, अमानवीय गुरुत्वाकर्षण क्षेत्रों के वर्णन में मौलिक भूमिका निभाते हैं।
इतिहास
अधिक जानकारी के लिए वॉन लाउ देखें,[2] पाउली,[3] मिलर,[49] पुराना,[50] गौरगौलहोन,[48] और विशेष सापेक्षता के इतिहास में ऐतिहासिक स्रोत को देखा जाता है ।
ने कणों की स्थिर करने वाले इलेक्ट्रोस्टैटिक प्रणाली ( स्थिर लोरेंत्ज़ ईथर सिद्धांत में) और उभरते हुए प्रणाली के मध्य त्वरण, बलों और द्रव्यमान के लिए सही (एक निश्चित कारक \ एप्सिलॉन तक) संबंध प्राप्त किया जाता है। इसमें से अनुवाद जोड़कर, साथ लोरेंत्ज़ कारक के रूप में दर्शाया जाता है |
के लिए , , , इस प्रकार (4c)अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान को दर्शाया जाता है ;
लोरेंत्ज़ ने बताया कि उसके पास का मूल्य निर्धारित करने का कोई साधन नहीं है . यदि को सेट हो गया होता तब , उसके भावों ने बिल्कुल सापेक्षतावादी रूप धारण कर लिया होगा।
1904:
लोरेंत्ज़
पिछले संबंधों को अधिक विस्तृत विधियों से प्राप्त किया, अर्थात् प्रणाली और चलती प्रणाली में स्थिर करने वाले कणों के गुणों के संबंध में , नए सहायक वेरिएबल के साथ के तुलना में 1899 की तुलना में, इस प्रकार:
शेष द्रव्यमान के फलन के रूप में अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान के लिए (4c, 5b).
इस बार, लोरेंत्ज़ यह दिखा सकता है, जिससे उनके सूत्र त्रुटिहीन सापेक्षतावादी रूप धारण कर लेते हैं। तथा जहाँ उन्होंने गति का समीकरण भी बनाया
साथ
जो (4d) साथ से मेल खाता है, , , , , , और विद्युत चुम्बकीय द्रव्यमान के रूप में। इसके अतिरिक्त , उन्होंने तर्क दिया, कियह सूत्र न केवल विद्युत आवेशित कणों के बलों और द्रव्यमान के लिए, किंतु अन्य प्रक्रियाओं के लिए भी मान्य होने चाहिए ताकि ईथर के माध्यम से पृथ्वी की गति का पता न चल सके।
1905:
हेनरी पोंकारे[H 1] तीन-बल (4e) के परिवर्तन को प्रारंभ किया जाता है | :
,के साथ और लोरेंत्ज़ कारक के रूप में, चार्ज घनत्व. या आधुनिक संकेतन में: , , , और . लोरेंत्ज़ के रूप में, उन्होंने को सेट किया था .
1905:
अल्बर्ट आइंस्टीन[H 3] सापेक्षता के अपने विशेष सिद्धांत के आधार पर गति के समीकरण निकाले, जो यांत्रिक ईथर की क्रिया के बिना समान रूप से मान्य जड़त्वीय फ़्रेमों के मध्य संबंध का प्रतिनिधित्व करते हैं। आइंस्टीन ने निष्कर्ष निकाला, कि क्षणिक जड़त्वीय फ़्रेमों में गति के समीकरण अपना न्यूटोनियन रूप को निरंतरता क्रियान्वित किया हैं:
.
यह इससे मेल खाता है , क्योंकि और और . अपेक्षाकृत गतिमान प्रणाली में परिवर्तन द्वारा उन्होंने उस फ्रेम में देखे गए विद्युत और चुंबकीय अवयवों के लिए समीकरण प्राप्त किए:
.
यह (4c) के साथ (से मेल खाता है) , क्योंकि और और और . नतीजतन, आइंस्टीन ने अनुदैर्ध्य और अनुप्रस्थ द्रव्यमान का निर्धारण किया, तथापि उन्होंने कोमोविंग स्प्रिंग बैलेंस द्वारा मापा जाता है इसे बल और प्रणाली में तीन-त्वरण के लिए से संबंधित किया जाता है :[38]:
लोरेंत्ज़ (1904) द्वारा दिए गए समीकरणों के अनुरूप समीकरण (4d) के साथ
, और और , समीकरण इसके अनुरूप हैं
1907:
आइंस्टाइन[H 5] एकसमान रूप से त्वरित संदर्भ फ्रेम का विश्लेषण किया और कोटलर-मोलर-रिंडलर निर्देशांक द्वारा दिए गए अनुरूप, समन्वय-निर्भर समय विस्तार और प्रकाश की गति के लिए सूत्र प्राप्त किए।
1907:
हरमन मिन्कोव्स्की[H 7] चार-बल (जिसे उन्होंने गतिशील बल कहा) और चार त्वरण के मध्य संबंध को परिभाषित किया
तदनुसार .
1908:
मिन्कोव्स्की[H 6] उचित समय के संबंध में दूसरे व्युत्पन्न को त्वरण सदिश (चार-त्वरण) के रूप में दर्शाता है। उन्होंने दिखाया, कि विश्वरेखा का इसका इच्छा से बिंदु पर परिमाण है, जहाँ संगत वक्रता हाइपरबोला (जर्मन: क्रुमुंगशीपरबेल) को केंद्र से के निर्देशित सदिश का परिमाण है .:
1909:
मैक्स बोर्न[H 8] कठोरता के रूप से अपने अध्ययन के दौरान मिन्कोव्स्की के त्वरण सदिश के निरंतर परिमाण के साथ गति को "हाइपरबोलिक गति" के रूप में दर्शाता है (German: हाइपरबेलबेवेगंग), के रूप में दर्शाता है। उन्होंने को सेट किया (जिसे अब उचित वेग कहा जाता है) और परिवर्तन समीकरणों के साथ लोरेंत्ज़ कारक के रूप में और उचित समय के रूप में, परिवर्तन समीकरणों के साथ
.
जो कि (6a) के साथ और (से मेल खाता है). बॉर्न को हटाकर हाइपरबोलिक समीकरण निकाला गया, और त्वरण के परिमाण को इस प्रकार परिभाषित किया . उन्होंने यह भी देखा कि उनके परिवर्तन का उपयोग हाइपरबोलिकली एक्सेलेरेटेड रेफरेंस प्रणाली (German: हाइपरबोलिश बेस्क्लेयुनिगेट्स बेजुगसिस्टम). में बदलने के लिए किया जा सकता है |
1909:
गुस्ताव हर्ग्लोट्ज़[H 9] एकसमान घूर्णन सहित सम्मिश्र त्वरित गति के सभी संभावित स्तिथियों तक बोर्न की जांच का विस्तार करता है।
1910:
अर्नोल्ड सोमरफेल्ड[H 11] हाइपरबोलिक गति के लिए बॉर्न के सूत्रों को अधिक संक्षिप्त रूप में लाया गया काल्पनिक समय वेरिएबल के रूप में और काल्पनिक कोण के रूप में:
उन्होंने नोट किया कि कब परिवर्तनशील हैं और स्थिर है, वे अतिपरवलयिक गति में आवेशित पिंड की विश्व रेखा का वर्णन करते हैं। किन्तु यदि स्थिर हैं और परिवर्तनशील है, तब वह इसके बाकी फ्रेम में परिवर्तन को दर्शाते हैं।
1911:
ग्रीष्मकालीन क्षेत्र[H 12] ने स्पष्ट रूप से में मात्रा के लिए अभिव्यक्ति उचित त्वरण (German: ईगेनबेस्क्लेयुनिगंग) का स्पष्ट रूप से उपयोग किया गया (German: ईगेनबेस्क्लेयुनिगंग) जो क्षणिक जड़त्वीय फ्रेम में त्वरण के रूप में ( 3a से मेल खाता है),। :
1911:
हर्ग्लोट्ज़[H 10] ने उचित त्वरण के अतिरिक्त स्पष्ट रूप से अभिव्यक्ति विश्राम त्वरण का (German: रुह्बेस्क्लेयुनिगुंग) उपयोग किया गया । उन्होंने इसे और के रूप में लिखा जो (3a) से मेल खाता है , जहाँ लोरेंत्ज़ कारक है और या विश्राम त्वरण के अनुदैर्ध्य और अनुप्रस्थ अवयव हैं।:
1911:
मैक्स वॉन लाउ[H 13] उनके मोनोग्राफ दास रिलेटिविट्सप्रिनज़िप के पहले संस्करण में वेग जोड़ के विभेदन द्वारा तीन-त्वरण के लिए परिवर्तन को व्युत्पन्न किया गया है।
(1c) के साथ-साथ ही पोंकारे (1905/6) तक समान है। इससे उन्होंने विश्राम त्वरण (3a के समान ) का परिवर्तन प्राप्त किया, और अंततः अतिशयोक्तिपूर्ण गति के सूत्र निकले जो (6a) से मेल खाते हैं:
इस प्रकार
,
और काल्पनिक कोण के साथ अतिशयोक्तिपूर्ण संदर्भ प्रणाली में परिवर्तन :
फ्रेडरिक कोटलर[H 15] मैक्सवेल के समीकरणों का सामान्य सहप्रसरण प्राप्त किया, और हर्ग्लोट्ज़ (1909) द्वारा दिए गए बोर्न सम्मिश्र गतियों का विश्लेषण करने के लिए चार-आयामी फ्रेनेट-सेरेट सूत्रों का उपयोग किया जाता है । उन्होंने हाइपरबोलिक गति और एकसमान गोलाकार गति के लिए उचित संदर्भ फ्रेम (फ्लैट दिक्काल) भी प्राप्त किया जाता है।
1913:
लाउ द्वारा[H 14] उनकी पुस्तक के दूसरे संस्करण में मिन्कोव्स्की के त्वरण सदिश द्वारा तीन-त्वरण के परिवर्तन को प्रतिस्थापित किया गया, जिसके लिए उन्होंने चार-त्वरण (German: विएररबेस्क्लेयुनिगंग) नाम अंकित कराया गया तथा जिसे द्वारा परिभाषित किया गया और को चार-वेग के रूप में परिभाषित किया गया । उन्होंने दिखाया, कि चार-त्वरण का परिमाण द्वारा बाकी त्वरण से मेल खाता है
,
जो (3b) (से मेल खाता है). इसके पश्चात , उन्होंने विश्राम त्वरण और हाइपरबोलिक गति और हाइपरबोलिक संदर्भ फ्रेम के परिवर्तन के लिए 1911 में समान सूत्र निकाले गये थे।
संदर्भ
↑Misner & Thorne & Wheeler (1973), p. 163: "Accelerated motion and accelerated observers can be analyzed using special relativity."
↑ 34.034.1Pfeffer & Nir (2012), p. 115, "In the special case in which the particle is momentarily at rest relative to the observer S, the force he measures will be the proper force".
French, A.P. (1968). Special Relativity. CRC Press. ISBN1420074814.
Freund, J. (2008). Special Relativity for Beginners: A Textbook for Undergraduates. World Scientific. ISBN978-9812771599.
Gourgoulhon, E. (2013). Special Relativity in General Frames: From Particles to Astrophysics. Springer. ISBN978-3642372766.
von Laue, M. (1921). Die Relativitätstheorie, Band 1 (fourth edition of "Das Relativitätsprinzip" ed.). Vieweg.; First edition 1911, second expanded edition 1913, third expanded edition 1919.
Koks, D. (2006). Explorations in Mathematical Physics. Springer. ISBN0387309438.
Kopeikin,S.; Efroimsky, M.; Kaplan, G. (2011). Relativistic Celestial Mechanics of the Solar System. John Wiley & Sons. ISBN978-3527408566.