स्थानीय खोज (अनुकूलन)

From Vigyanwiki
Revision as of 11:41, 28 June 2023 by Admin (talk | contribs)

कंप्यूटर विज्ञान में,स्थानीय अविष्कार कम्प्यूटेशनल रूप से कठिन गणितीय अनुकूलन समस्याओं को हल करने के लिए अनुमानी पद्धति है। स्थानीय अविष्कार का उपयोग उन समस्याओं पर किया जा सकता है जिन्हें कई उम्मीदवार समाधान के बीच मानदंड को अधिकतम करने वाले समाधान को अविष्कार ने के रूप में तैयार किया जा सकता है। स्थानीय अविष्कार एल्गोरिदम स्थानीय परिवर्तनों को लागू करके उम्मीदवार समाधान ("अविष्कार स्थान") के स्थान पर समाधान की ओर बढ़ते हैं, जब तक कि इष्टतम माना जाने वाला समाधान नहीं मिल जाता है या समय सीमा समाप्त नहीं हो जाती है।

स्थानीय अविष्कार एल्गोरिदम व्यापक रूप से कंप्यूटर विज्ञान (विशेष रूप से कृत्रिम बुद्धिमत्ता), गणित, संचालन अनुसंधान, अभियांत्रिकी और जैव सूचना विज्ञान की समस्याओं सहित कई कठिन कम्प्यूटेशनल समस्याओं पर लागू होते हैं। स्थानीय अविष्कार एल्गोरिदम के उदाहरण वॉकसैट, ट्रैवलिंग सेल्समैन समस्या के लिए 2-विकल्प|2-ऑप्ट एल्गोरिदम और मेट्रोपोलिस-हेस्टिंग्स एल्गोरिदम हैं।[1] चूंकि कभी-कभी स्थानीय अविष्कार एल्गोरिदम के लिए ढाल वंश को प्रतिस्थापित करना संभव होता है, ढाल वंश ही परिवार में नहीं होता है: चूंकि यह वैश्विक अनुकूलन के लिए पुनरावृत्त विधि है, यह हानि फ़ंक्शन पर निर्भर करता है। समाधान स्थान है।

उदाहरण

कुछ समस्याएँ जहाँ स्थानीय अविष्कार लागू की गई हैं:

  1. [[ वर्टेक्स कवर समस्या ]], जिसमें समाधान ग्राफ (असतत गणित) का वर्टेक्स कवर है, और लक्ष्य न्यूनतम संख्या में नोड्स के साथ समाधान अविष्कार ना है
  2. ट्रैवलिंग सेल्समैन की समस्या, जिसमें समाधान चक्र (ग्राफ सिद्धांत) है जिसमें ग्राफ के सभी नोड होते हैं और लक्ष्य चक्र की कुल लंबाई को कम करना है
  3. बूलियन संतुष्टि समस्या, जिसमें उम्मीदवार समाधान सत्य असाइनमेंट है,और लक्ष्य असाइनमेंट के लिए संतुष्ट क्लॉज (तर्क) की संख्या को अधिकतम करना है; इस स्थितियों में, अंतिम समाधान तभी उपयोगी होता है जब वह सभी खंडों को संतुष्ट करता हो |
  4. नर्स शेड्यूलिंग समस्या जहां समाधान पाली में काम के लिए नर्सों का असाइनमेंट है जो सभी स्थापित बाधा संतुष्टि को संतुष्ट करता है|
  5. कश्मीर मेडॉयड क्लस्टरिंग समस्या और अन्य संबंधित सुविधा स्थान समस्याएं जिनके लिए स्थानीय अविष्कार सबसे खराब स्थिति के दृष्टिकोण से सबसे अच्छा ज्ञात सन्निकटन अनुपात प्रदान करती है
  6. हॉपफील्ड न्यूरल नेटवर्क्स समस्या जिसके लिए हॉपफील्ड नेटवर्क में स्थिर कॉन्फ़िगरेशन ढूंढा जा रहा है।

विवरण

अधिकांश समस्याओं को अविष्कार स्थान और लक्ष्य के संदर्भ में कई अलग-अलग विधियों से तैयार किया जा सकता है। उदाहरण के लिए, ट्रैवलिंग सेल्समैन की समस्या के लिए समाधान सभी शहरों का दौरा करने वाला मार्ग हो सकता है और लक्ष्य सबसे छोटा मार्ग अविष्कार ना है। किन्तु समाधान रास्ता भी हो सकता है और चक्र होना लक्ष्य का भाग है।

स्थानीय अविष्कार एल्गोरिथ्म उम्मीदवार समाधान से प्रारंभ होता है और फिर पुनरावृत्त विधि पड़ोस (गणित) समाधान की ओर बढ़ती है; पड़ोस सभी संभावित समाधानों का समूह है जो वर्तमान समाधान से न्यूनतम संभव सीमा तक भिन्न है। इसके लिए अविष्कार स्थान पर पड़ोस के संबंध को परिभाषित करने की आवश्यकता है। उदाहरण के रूप में, वर्टेक्स कवर का पड़ोस अन्य वर्टेक्स कवर है जो एकमात्र नोड से भिन्न होता है। बूलियन संतुष्टि समस्या के लिए बूलियन असाइनमेंट के पड़ोसी वे हैं जिनके पास विपरीत स्थिति में एकल चर है। ही समस्या पर परिभाषित कई अलग-अलग पड़ोस हो सकते हैं; पड़ोस के साथ स्थानीय अनुकूलन जिसमें समाधान के k घटकों को बदलना सम्मलित है, अधिकांशतः'k-opt' कहा जाता है।

सामान्यतः प्रत्येक उम्मीदवार समाधान में से अधिक पड़ोसी होते हैं; वर्तमान असाइनमेंट के पड़ोस (गणित) में समाधान के बारे में एकमात्र जानकारी का उपयोग करके किसका चयन करना है, इसका चुनाव किया जाता है, इसलिए इसका नाम स्थानीय अविष्कार है। जब पड़ोसी समाधान का चुनाव स्थानीय रूप से कसौटी को अधिकतम करने के लिए किया जाता है, अर्थात: लालची अविष्कार , मेटाह्यूरिस्टिक पहाड़ी चढ़ाई का नाम लेता है।

जब कोई सुधार करने वाला पड़ोसी उपस्थित नहीं होता है, तो स्थानीय अविष्कार स्थानीय इष्टतम पर अटक जाती है।

इस स्थानीय-ऑप्टिमा समस्या को पुनरारंभ (विभिन्न प्रारंभिक स्थितियों के साथ बार-बार स्थानीय अविष्कार ), यादृच्छिककरण, या पुनरावृत्तियों के आधार पर अधिक जटिल योजनाओं, जैसे पुनरावृत्त स्थानीय अविष्कार , स्मृति पर, प्रतिक्रियात्मक अविष्कार अनुकूलन की प्रकार, मेमोरी-कम स्टोकेस्टिक संशोधनों का उपयोग करके ठीक किया जा सकता है। तैयार किए हुयी धातु पे पानी चढाने की कला की प्रकार होता है।

स्थानीय अविष्कार इस बात की गारंटी नहीं देती है कि दिया गया कोई भी समाधान इष्टतम है।

अविष्कार निश्चित समय सीमा के बाद समाप्त हो सकती है, अब तक पाया गया सबसे अच्छा समाधान दिए गए चरणों की संख्या में सुधार नहीं करता है। स्थानीय अविष्कार कभी कभी भी एल्गोरिदम है:

यह पहला वैध समाधान अविष्कार ने के बाद किसी भी समय बाधित होने पर भी वैध समाधान लौटा सकता है।

स्थानीय अविष्कार सामान्यतः सन्निकटन एल्गोरिथम या अपूर्ण एल्गोरिथम है, क्योंकि अविष्कार रुक सकती है, वर्तमान सर्वोत्तम समाधान इष्टतम न हो। यह तब भी हो सकता है जब समाप्ति होती है क्योंकि वर्तमान सर्वोत्तम समाधान में सुधार नहीं किया जा सकता है, क्योंकि इष्टतम समाधान एल्गोरिथम के लिए पार किए गए समाधानों के पड़ोस से दूर हो सकता है।

शूरमैन और साउथी स्थानीय अविष्कार (गहराई, गतिशीलता और कवरेज) के लिए प्रभावशीलता के तीन उपाय प्रस्तावित करते हैं:[2] * गहराई: वर्तमान (सर्वश्रेष्ठ) समाधान की लागत;

  • गतिशीलता: अविष्कार स्थान के विभिन्न क्षेत्रों में तेजी से जाने की क्षमता (लागत कम रखते हुए);
  • कवरेज: अविष्कार कैसे व्यवस्थित रूप से अविष्कार स्थान को कवर करती है, किसी भी अनछुए असाइनमेंट और सभी विज़िट किए गए असाइनमेंट के बीच की अधिकतम दूरी है।

वे परिकल्पना करते हैं कि स्थानीय अविष्कार एल्गोरिदम अच्छी प्रकार से काम करते हैं, इसलिए नहीं कि उन्हें अविष्कार स्थान की कुछ समझ है, बल्कि इसलिए कि वे जल्दी से आशाजनक क्षेत्रों में चले जाते हैं, और कम गहराई पर अविष्कार स्थान को जितनी जल्दी हो सके, व्यापक रूप से और व्यवस्थित रूप से एक्सप्लोर करते हैं।

यह भी देखें

स्थानीय अविष्कार निम्न का उप-क्षेत्र है:

स्थानीय अविष्कार में फ़ील्ड सम्मलित हैं:

वास्तविक-मूल्यवान अविष्कार -स्थान

वास्तविक संख्या की स्थानीय अविष्कार करने के लिए कई विधियाँ उपस्थित हैं | वास्तविक-मूल्यवान अविष्कार -स्थान:है।

संदर्भ

  1. "12LocalSearch.key" (PDF).
  2. D. Schuurmans and F. Southey. Local search characteristics of in- complete SAT procedures. AI J., 132(2):121–150, 2001.


ग्रन्थसूची