सदिश क्षेत्रफल

From Vigyanwiki
Revision as of 11:40, 1 November 2023 by Abhishekkshukla (talk | contribs)

3-आयामी ज्यामिति और सदिश गणना में, क्षेत्रफल सदिश एक सदिश होता है जो क्षेत्रफल की मात्रा को दिशा के साथ जोड़ता है, इस प्रकार तीन आयामों में अभिविन्यस्त क्षेत्रफल का प्रतिनिधित्व करता है।

तीन आयामों में परिबद्ध प्रत्येक सतह को अद्वितीय क्षेत्रफल सदिश से जोड़ा जा सकता है जिसे इसका सदिश क्षेत्रफल कहा जाता है। यह सामान्य सतह के सतह समाकल के बराबर है, और सामान्य (अदिश) सतह क्षेत्रफल से अलग है।

सदिश क्षेत्रफल को दो आयामों में सांकेतिक क्षेत्रफल के त्रि-आयामी सामान्यीकरण के रूप में देखा जा सकता है।

परिभाषा

अदिश क्षेत्रफल S और इकाई सामान्य की परिमित समतल सतह के लिए, सदिश क्षेत्रफल S को क्षेत्रफल द्वारा मापी गई इकाई सामान्य के रूप में परिभाषित किया गया है-

समतल फलक क्षेत्रफलों के समुच्चय Si से संघटित अभिविन्यस्त सतह S के लिए, सतह का सदिश क्षेत्रफल इस प्रकार दिया गया है
जहां i क्षेत्रफल Si के लिए इकाई सामान्य सदिश है।


परिबद्ध, अभिविन्यस्त वक्र सतहों के लिए जो पर्याप्त रूप से अच्छी तरह से व्यवहार की जाती हैं, हम अभी भी सदिश क्षेत्रफल को परिभाषित कर सकते हैं। सबसे पहले, हम सतह को अतिसूक्ष्म तत्वों में विभाजित करते हैं, जिनमें से प्रत्येक प्रभावी रूप से समतल है। क्षेत्रफलफल के प्रत्येक अतिसूक्ष्म तत्व के लिए, हमारे पास एक क्षेत्रफलफल सदिश है, वह भी अतिसूक्ष्म।

जहां dS के लंबवत स्थानीय इकाई सदिश है। एकीकृत करने से सतह के लिए सदिश क्षेत्रफल प्राप्त होता है।

गुण

किसी सतह के सदिश क्षेत्रफल की व्याख्या (सांकेतिक) प्रक्षेपित क्षेत्रफल या उस तल में सतह की "छाया" के रूप में की जा सकती है जिसमें यह सबसे बड़ा है इसकी दिशा उस तल के सामान्य द्वारा दी जाती है।

वक्रित या फलकित (अर्थात् असमतलीय) सतह के लिए, सदिश क्षेत्रफल वास्तविक सतह क्षेत्रफल की तुलना में परिमाण में छोटा होता है। एक चरम उदाहरण के रूप में, संवृत्त सतह में मनमाने ढंग से बड़ा क्षेत्रफल हो सकता है, लेकिन इसका सदिश क्षेत्रफल आवश्यक रूप से शून्य है।[1] जो सतहें सीमा साझा करती हैं, उनके क्षेत्रफल बहुत भिन्न हो सकते हैं, लेकिन उनका सदिश क्षेत्रफल एक ही होना चाहिए—सदिश क्षेत्रफल पूरी तरह से सीमा द्वारा निर्धारित होता है। ये स्टोक्स की प्रमेय के परिणाम हैं।

समांतर चतुर्भुज का सदिश क्षेत्रफलफल इसे विस्तार करने वाले दो सदिशों के सदिश गुणनफल द्वारा दिया जाता है यह समान सदिशों द्वारा निर्मित त्रिभुज के (सदिश) क्षेत्रफलफल का दोगुना है। सामान्य तौर पर, किसी भी सतह का सदिश क्षेत्रफल जिसकी सीमा में सरल रेखा खंडों (दो आयामों में बहुभुज के अनुरूप) का अनुक्रम होता है की गणना सतह के त्रिकोणीयकरण के अनुरूप सदिश गुणनफलों की श्रृंखला का उपयोग करके की जा सकती है। यह तीन आयामों के लिए शूलेस सूत्र का सामान्यीकरण है।

उचित रूप से चुने गए सदिश क्षेत्रफल पर लागू स्टोक्स प्रमेय का उपयोग करके, सदिश क्षेत्रफल के लिए एक सीमा समाकल प्राप्त किया जा सकता है-

जहाँ , S की सीमा है, अर्थात एक या अधिक अभिविन्यस्त संवृत्त स्थान वक्र। यह ग्रीन की प्रमेय का उपयोग करके दो आयामी क्षेत्रफल गणना के अनुरूप है।

अनुप्रयोग

सतह समाकलों की गणना करते समय क्षेत्रफल सदिश का उपयोग किया जाता है, जैसे सतह के माध्यम से सदिश क्षेत्रफल के प्रवाह का निर्धारण करते समय। प्रवाह क्षेत्रफल के अदिश गुणनफल और (अतिसूक्ष्म) क्षेत्रफल सदिश के समाकल द्वारा दिया जाता है। जब क्षेत्रफल सतह पर स्थिर होता है तो समाकल क्षेत्रफल के अदिश गुणनफल और सतह के सदिश क्षेत्रफल को सरल बनाता है।

समतलों पर क्षेत्रफल का प्रक्षेपण

किसी समतल पर प्रक्षेपित क्षेत्रफल सदिश क्षेत्रफल S के अदिश गुणनफल और लक्ष्य समतल इकाई सामान्य द्वारा दिया जाता है-

उदाहरण के लिए, xy-समतल पर प्रक्षेपित क्षेत्रफल सदिश क्षेत्रफल के z-घटक के बराबर है, और इसके बराबर भी है
जहां θ समतल सामान्य और z-अक्ष के बीच का कोण है।

यह भी देखें

  • बाइवेक्टर किसी भी संख्या में आयामों में अभिविन्यस्त क्षेत्रफल का प्रतिनिधित्व करता है
  • डे गुआ की प्रमेय, सदिश क्षेत्रफल के लंबकोणीय घटकों में अपघटन पर
  • सदिश गुणनफल
  • सतह सामान्य
  • सतह समाकल

टिप्पणियाँ

  1. Spiegel, Murray R. (1959). वेक्टर विश्लेषण का सिद्धांत और समस्याएं. Schaum's Outline Series. McGraw Hill. p. 25.