अवस्था संक्रमण आव्यूह

From Vigyanwiki
Revision as of 20:36, 8 October 2023 by alpha>Prabhat M

नियंत्रण सिद्धांत में, अवस्था संक्रमण आव्यूह एक आव्यूह है जिसका गुणन फल अवस्था वेक्टर के साथ होता है प्रारंभिक समय में देता है बाद के समय में . अवस्था-संक्रमण आव्यूह का उपयोग रैखिक गतिशील प्रणालियों का सामान्य समाधान प्राप्त करने के लिए किया जा सकता है।

रैखिक प्रणाली समाधान

अवस्था-संक्रमण आव्यूह का उपयोग निम्नलिखित रूप में एक रैखिक प्रणाली के सामान्य अवस्था-संक्रमण प्रतिनिधित्व का समाधान खोजने के लिए किया जाता है

,

जहाँ प्रणाली की स्थितियाँ हैं, निविष्ट संकेत है, और आव्यूह फ़ंक्शन हैं, और पर प्रारंभिक स्थिति है . अवस्था-संक्रमण आव्यूह का उपयोग करना , समाधान इस प्रकार दिया गया है:[1][2]

पहले शब्द को शून्य-निविष्ट प्रतिक्रिया के रूप में जाना जाता है और यह दर्शाता है कि किसी भी निविष्ट के अभाव में प्रणाली की स्थिति कैसे विकसित होगी। दूसरे शब्द को शून्य-स्थिति प्रतिक्रिया के रूप में जाना जाता है और यह परिभाषित करता है कि निविष्ट प्रणाली को कैसे प्रभावित करते हैं।

पीनो-बेकर श्रृंखला

सबसे सामान्य संक्रमण आव्यूह पीनो-बेकर श्रृंखला द्वारा दिया गया है

जहाँ पहचान आव्यूह है. यह आव्यूह समान रूप से और पूरी तरह से एक ऐसे समाधान में परिवर्तित होता है जो मौजूद है और अद्वितीय है।[2]

अन्य गुण

अवस्था संक्रमण आव्यूह निम्नलिखित रिश्तों को संतुष्ट करता है:

1. यह सतत है और इसके निरंतर व्युत्पन्न हैं।

2, यह कभी एकवचन नहीं होता; वास्तव में और , जहाँ पहचान आव्यूह है.

3. सभी के लिए .[3]

4. सभी के लिए .

5. यह अवकल समीकरण को संतुष्ट करता है प्रारंभिक शर्तों के साथ .

6. अवस्था-संक्रमण आव्यूह , द्वारा दिए गए

जहां आव्यूह मौलिक आव्यूह (रैखिक अंतर समीकरण) है जो संतुष्ट करता है

प्रारंभिक शर्त के साथ .

7. अवस्था को देखते हुए किसी भी समय , किसी अन्य समय में अवस्था मैपिंग द्वारा दिया गया है


अवस्था-संक्रमण आव्यूह का अनुमान

समय-अपरिवर्तनीय मामले में, हम आव्यूह घातांक का उपयोग करते हुए परिभाषित कर सकते हैं, जैसे . [4]

समय-संस्करण मामले में, अवस्था-संक्रमण आव्यूह अंतर समीकरण के समाधान से अनुमान लगाया जा सकता है प्रारंभिक शर्तों के साथ द्वारा दिए गए , , ..., . संबंधित समाधान आव्यूह के कॉलम प्रदान करते हैं. अब, संपत्ति 4 से,

 सभी के लिए . समय-भिन्न समाधान पर विश्लेषण जारी रखने से पहले अवस्था-संक्रमण आव्यूह निर्धारित किया जाना चाहिए।

यह भी देखें

संदर्भ

  1. Baake, Michael; Schlaegel, Ulrike (2011). "पीनो बेकर श्रृंखला". Proceedings of the Steklov Institute of Mathematics. 275: 155–159. doi:10.1134/S0081543811080098. S2CID 119133539.
  2. 2.0 2.1 Rugh, Wilson (1996). रैखिक प्रणाली सिद्धांत. Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-441205-2.
  3. Brockett, Roger W. (1970). परिमित आयामी रैखिक प्रणाली. John Wiley & Sons. ISBN 978-0-471-10585-5.
  4. Reyneke, Pieter V. (2012). "Polynomial Filtering: To any degree on irregularly sampled data". Automatika. 53 (4): 382–397. doi:10.7305/automatika.53-4.248. S2CID 40282943.


अग्रिम पठन