सहसंयोजक मौलिक क्षेत्र सिद्धांत

From Vigyanwiki
Revision as of 18:58, 17 November 2023 by alpha>Indicwiki (Created page with "गणितीय भौतिकी में, सहसंयोजक शास्त्रीय क्षेत्र सिद्धांत फाइबर...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणितीय भौतिकी में, सहसंयोजक शास्त्रीय क्षेत्र सिद्धांत फाइबर बंडलों के खंड (फाइबर बंडल) द्वारा शास्त्रीय क्षेत्र सिद्धांतों का प्रतिनिधित्व करता है, और उनकी गतिशीलता को क्षेत्र (भौतिकी) के एक परिमित-आयामी स्थान के संदर्भ में व्यक्त किया जाता है। आजकल यह तो सर्वविदित है[citation needed] जेट बंडल और वैरिएबल बाइकॉम्प्लेक्स ऐसे विवरण के लिए सही डोमेन हैं। सहसंयोजक शास्त्रीय क्षेत्र सिद्धांत का हैमिल्टनियन संस्करण सहसंयोजक हैमिल्टनियन क्षेत्र सिद्धांत है जहां संवेग सभी विश्व निर्देशांक के संबंध में क्षेत्र चर के व्युत्पन्न के अनुरूप है। गैर-स्वायत्त यांत्रिकी को समय अक्ष ℝ पर फाइबर बंडलों पर सहसंयोजक शास्त्रीय क्षेत्र सिद्धांत के रूप में तैयार किया गया है।

उदाहरण

क्वांटम क्षेत्र सिद्धांत में रुचि रखने वाले शास्त्रीय क्षेत्र सिद्धांतों के कई महत्वपूर्ण उदाहरण नीचे दिए गए हैं। विशेष रूप से, ये वे सिद्धांत हैं जो कण भौतिकी के मानक मॉडल का निर्माण करते हैं। इन उदाहरणों का उपयोग शास्त्रीय क्षेत्र सिद्धांत के सामान्य गणितीय सूत्रीकरण की चर्चा में किया जाएगा।

अयुग्मित सिद्धांत

युग्मित सिद्धांत

अपेक्षित गणितीय संरचनाएँ

शास्त्रीय क्षेत्र सिद्धांत तैयार करने के लिए निम्नलिखित संरचनाओं की आवश्यकता होती है:

स्पेसटाइम

एक चिकनी विविधता .

इसे विभिन्न रूप से विश्व अनेक गुना (मीट्रिक जैसी अतिरिक्त संरचनाओं के बिना मैनिफोल्ड पर जोर देने के लिए), अंतरिक्ष समय (जब लोरेंत्ज़ियन मेट्रिक से सुसज्जित), या अधिक ज्यामितीय दृष्टिकोण के लिए आधार कई गुना के रूप में जाना जाता है।

स्पेसटाइम पर संरचनाएं

स्पेसटाइम अक्सर अतिरिक्त संरचना के साथ आता है। उदाहरण हैं

साथ ही एक अभिविन्यास की आवश्यक संरचना, सभी विविधताओं में एकीकरण की धारणा के लिए आवश्यक है .

स्पेसटाइम की समरूपता

अंतरिक्ष समय समरूपता स्वीकार कर सकते हैं. उदाहरण के लिए, यदि यह एक मीट्रिक से सुसज्जित है , ये की आइसोमेट्री हैं , वेक्टर फ़ील्ड्स को ख़त्म करना द्वारा उत्पन्न। समरूपताएँ एक समूह बनाती हैं , स्पेसटाइम की ऑटोमोर्फिज्म। इस मामले में सिद्धांत के क्षेत्रों को प्रतिनिधित्व में बदलना चाहिए .

उदाहरण के लिए, मिन्कोव्स्की अंतरिक्ष के लिए, समरूपताएं पोंकारे समूह हैं .

गेज, प्रमुख बंडल और कनेक्शन

एक झूठ समूह स्वतंत्रता की आंतरिक डिग्री की (निरंतर) समरूपता का वर्णन करना। लाई समूह-लाई बीजगणित पत्राचार के माध्यम से संबंधित लाई बीजगणित को दर्शाया गया है . इसे गेज समूह कहा जाता है।

एक प्रमुख सजातीय स्थान -बंडल , अन्यथा ए के रूप में जाना जाता है -टोरसोर. इसे कभी-कभी इस प्रकार लिखा जाता है

कहाँ विहित प्रक्षेपण मानचित्र पर है और आधार अनेक गुना है.

कनेक्शन और गेज फ़ील्ड

यहां हम कनेक्शन को एक प्रमुख कनेक्शन के रूप में देखते हैं। क्षेत्र सिद्धांत में इस संबंध को सहसंयोजक व्युत्पन्न के रूप में भी देखा जाता है जिनकी विभिन्न क्षेत्रों पर कार्रवाई बाद में परिभाषित की गई है।

एक प्रमुख कनेक्शन दर्शाया गया है एक है -प्रक्षेपण' और 'सही-समतुल्यता' की तकनीकी शर्तों को संतुष्ट करने वाले पी पर मूल्यांकित 1-फॉर्म: प्रमुख कनेक्शन लेख में पाया गया विवरण।

एक तुच्छीकरण के तहत इसे स्थानीय गेज फ़ील्ड के रूप में लिखा जा सकता है , ए -एक तुच्छीकरण पैच पर मूल्यांकित 1-फ़ॉर्म . यह कनेक्शन का यह स्थानीय रूप है जिसे भौतिकी में गेज क्षेत्र के साथ पहचाना जाता है। जब आधार कई गुना हो जाता है सपाट है, ऐसे सरलीकरण हैं जो इस सूक्ष्मता को दूर करते हैं।

संबद्ध वेक्टर बंडल और पदार्थ सामग्री

एक संबद्ध वेक्टर बंडल मुख्य बंडल से संबद्ध एक प्रतिनिधित्व के माध्यम से सम्पूर्णता हेतु एक प्रतिवेदन दिया गया , का फाइबर है .

एक फ़ील्ड या मैटर फ़ील्ड संबंधित वेक्टर बंडल का एक अनुभाग (फाइबर बंडल) है। इनका संग्रह, गेज फ़ील्ड के साथ, सिद्धांत की विषय सामग्री है।

लैग्रेंजियन

एक लैग्रेंजियन : एक फाइबर बंडल दिया गया , लैग्रेंजियन एक फ़ंक्शन है .

मान लीजिए कि मामले की सामग्री अनुभागों द्वारा दी गई है फाइबर के साथ उपर से। फिर उदाहरण के लिए, हम अधिक ठोस रूप से विचार कर सकते हैं एक बंडल बनने के लिए जहां फाइबर पर है . यह तब अनुमति देता है किसी क्षेत्र की कार्यप्रणाली के रूप में देखा जाना।

यह बड़ी संख्या में दिलचस्प सिद्धांतों के लिए गणितीय पूर्वापेक्षाएँ पूरी करता है, जिनमें ऊपर दिए गए उदाहरण अनुभाग में दिए गए सिद्धांत भी शामिल हैं।

फ्लैट स्पेसटाइम पर सिद्धांत

जब आधार कई गुना हो जाता है समतल है, यानी, (छद्म-यूक्लिडियन अंतरिक्ष-)यूक्लिडियन अंतरिक्ष, कई उपयोगी सरलीकरण हैं जो सिद्धांतों से निपटने के लिए वैचारिक रूप से कम कठिन बनाते हैं।

सरलीकरण इस अवलोकन से आता है कि फ्लैट स्पेसटाइम अनुबंध योग्य है: यह बीजगणितीय टोपोलॉजी में एक प्रमेय है कि फ्लैट पर कोई भी फाइबर बंडल तुच्छ है.

विशेष रूप से, यह हमें वैश्विक तुच्छीकरण चुनने की अनुमति देता है , और इसलिए वैश्विक स्तर पर गेज फ़ील्ड के रूप में कनेक्शन की पहचान करें इसके अलावा, एक तुच्छ संबंध भी है जो हमें संबंधित वेक्टर बंडलों की पहचान करने की अनुमति देता है , और फिर हमें फ़ील्ड को अनुभागों के रूप में नहीं बल्कि केवल फ़ंक्शन के रूप में देखने की आवश्यकता है . दूसरे शब्दों में, विभिन्न बिंदुओं पर वेक्टर बंडल तुलनीय हैं। इसके अलावा, फ्लैट स्पेसटाइम के लिए लेवी-सिविटा कनेक्शन फ़्रेम बंडल पर तुच्छ कनेक्शन है।

फिर टेंसर या स्पिन-टेंसर फ़ील्ड पर स्पेसटाइम सहसंयोजक व्युत्पन्न केवल फ्लैट निर्देशांक में आंशिक व्युत्पन्न है। हालाँकि गेज सहसंयोजक व्युत्पन्न को एक गैर-तुच्छ कनेक्शन की आवश्यकता हो सकती है जिसे सिद्धांत का गेज क्षेत्र माना जाता है।

भौतिक मॉडल के रूप में सटीकता

कमजोर गुरुत्वाकर्षण वक्रता में, समतल स्पेसटाइम अक्सर कमजोर घुमावदार स्पेसटाइम के लिए एक अच्छे सन्निकटन के रूप में कार्य करता है। प्रयोग के लिए यह सन्निकटन अच्छा है. मानक मॉडल को फ्लैट स्पेसटाइम पर परिभाषित किया गया है, और इसने आज तक भौतिकी के सबसे सटीक सटीक परीक्षण तैयार किए हैं।

यह भी देखें

संदर्भ

  • Saunders, D.J., "The Geometry of Jet Bundles", Cambridge University Press, 1989, ISBN 0-521-36948-7
  • Bocharov, A.V. [et al.] "Symmetries and conservation laws for differential equations of mathematical physics", Amer. Math. Soc., Providence, RI, 1999, ISBN 0-8218-0958-X
  • De Leon, M., Rodrigues, P.R., "Generalized Classical Mechanics and Field Theory", Elsevier Science Publishing, 1985, ISBN 0-444-87753-3
  • Griffiths, P.A., "Exterior Differential Systems and the Calculus of Variations", Boston: Birkhäuser, 1983, ISBN 3-7643-3103-8
  • Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery R., Momentum Maps and Classical Fields Part I: Covariant Field Theory, November 2003 arXiv:physics/9801019
  • Echeverria-Enriquez, A., Munoz-Lecanda, M.C., Roman-Roy, M., Geometry of Lagrangian First-order Classical Field Theories, May 1995 arXiv:dg-ga/9505004
  • Giachetta, G., Mangiarotti, L., Sardanashvily, G., "Advanced Classical Field Theory", World Scientific, 2009, ISBN 978-981-283-895-7 (arXiv:0811.0331)