अतिसंभावित

From Vigyanwiki
Revision as of 16:03, 5 December 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

सैद्धांतिक भौतिकी में, अतिसंभावित सुपरसिमेट्रिक क्वांटम यांत्रिकी में ऐसा फलन है। अतिसंभावित को देखते हुए, दो साझेदार क्षमताएं प्राप्त की जाती हैं, जिनमें से प्रत्येक श्रोडिंगर समीकरण में क्षमता के रूप में कार्य कर सकती है। शून्य के संभावित आइगेनवैल्यूज़ के अतिरिक्त, भागीदार संभावनाओं का स्पेक्ट्रम समान होता है, जिसका अर्थ है कि संभावित शून्य-ऊर्जा भूमि स्थिति के अतिरिक्त, दो संभावनाओं द्वारा दर्शाए गए भौतिक प्रणालियों में समान विशेषता ऊर्जा होती है।

एक-आयामी उदाहरण

स्वतंत्रता की दो अवस्था वाली आंतरिक डिग्री वाले एक-आयामी, असापेक्षवादी कण पर विचार करें जिसे "स्पिन" कहा जाता है। (यह असापेक्ष क्वांटम यांत्रिकी में सामने आने वाली स्पिन की सामान्य धारणा नहीं है, क्योंकि वास्तविक स्पिन केवल त्रि-आयामी अंतरिक्ष में कणों पर प्रारम्भ होती है।) b और इसके हर्मिटियन सहायक b उन ऑपरेटरों (भौतिकी) को दर्शाते है जो "स्पिन अप" कण को ​​​​रूपांतरित करते हैं। क्रमशः "स्पिन डाउन" कण इसके विपरीत है। इसके अतिरिक्त, b और b को इस प्रकार सामान्यीकृत किया जाए कि एंटीकम्यूटेटर {b,b} 1 के समान हो, और b2 , 0 के समान हो। मान लीजिए कि p कण की गति का प्रतिनिधित्व करता है और x इसकी स्थिति वेक्टर को [x,p]=i के साथ दर्शाता है, जहां हम प्राकृतिक इकाइयों का उपयोग करते हैं जिससे मान लें कि W (अतिसंभावित) x के स्वेछानुसार अवकलनीय फलन का प्रतिनिधित्व करता है और सुपरसिमेट्रिक ऑपरेटरों Q1 और Q2 को इस प्रकार परिभाषित करता है:

ऑपरेटर Q1 और Q2 स्व-सहायक हैं। हैमिल्टनियन (क्वांटम यांत्रिकी) मान लीजिये,

जहां W', W के अवकलज को दर्शाता है। यह भी ध्यान रखें कि {Q1,Q2}=0 है। इन परिस्थितियों में, उपरोक्त प्रणाली N=2 सुपरसिममेट्री का टॉय मॉडल है। क्वांटम क्षेत्र सिद्धांत के अनुरूप, स्पिन डाउन और स्पिन अप अवस्थाओं को प्रायः क्रमशः "बोसोनिक" और "फ़र्मीओनिक" अवस्थाओं के रूप में जाना जाता है। इन परिभाषाओं के साथ, Q1 और Q2 "बोसोनिक" अवस्थाओं को "फ़र्मीओनिक" अवस्थाओं में मैप करते हैं। इसके विपरीत बोसोनिक या फर्मिओनिक क्षेत्रों तक सीमित करने से दो साझेदार क्षमताएं निर्धारित होती हैं:

चार अंतरिक्ष समय आयामों में

चार स्पेसटाइम आयामों के साथ अतिसममिति क्वांटम क्षेत्र सिद्धांतों में, जिसका प्रकृति से कुछ संबंध हो सकता है, यह ज्ञात होता है कि सदिश (भौतिकी) क्षेत्र चिरल सुपरफील्ड के सबसे निचले घटक के रूप में उत्पन्न होते हैं, जो स्वचालित रूप से जटिल मान वाले होते हैं। हम चिरल सुपरफ़ील्ड के जटिल संयुग्म को एंटी-चिरल सुपरफ़ील्ड के रूप में पहचान सकते हैं। सुपरफील्ड्स के सेट से एक्शन प्राप्त करने के दो संभावित विधि हैं:

  • विस्तारित किये गए संपूर्ण सुपरस्पेस पर सुपरफ़ील्ड को एकीकृत किया जाता है और में,

या

  • सुपरस्पेस के चिरल अर्ध भाग पर चिरल सुपरफ़ील्ड को एकीकृत किया जाता है, जिसके द्वारा विस्तारित किया गया है और , पर नहीं विस्तारित किया गया है।

दूसरा विकल्प हमें बताता है कि चिरल सुपरफील्ड्स के सेट का स्वेछा होलोमोर्फिक फलन लैग्रेंजियन में शब्द के रूप में दिखाई दे सकता है जो सुपरसिमेट्री के अंतर्गत अपरिवर्तनीय है। इस संदर्भ में, होलोमोर्फिक का अर्थ है कि फलन केवल चिरल सुपरफील्ड्स पर निर्भर हो सकता है, न कि उनके जटिल संयुग्मों पर निर्भर हो सकता है। हम ऐसे फलन W को अतिक्षमता कह सकते हैं। तथ्य यह है कि W चिरल सुपरफील्ड्स में होलोमोर्फिक है, यह समझाने में सहायता करता है कि सुपरसिमेट्रिक सिद्धांत अपेक्षाकृत सुव्यवस्थित क्यों हैं, क्योंकि यह जटिल विश्लेषण से शक्तिशाली गणितीय उपकरणों का उपयोग करने की अनुमति देता है। वास्तव में, यह ज्ञात है कि W को कोई विक्षुब्ध सुधार नहीं मिलता है, जिसके परिणाम को सुपरसिमेट्री गैर-पुनर्सामान्यीकरण प्रमेय कहा जाता है। ध्यान दें कि विक्षुब्ध करने वाली प्रक्रियाएं इसे व्यवस्थित कर सकती हैं, उदाहरण के लिए इंस्टेंटन के कारण बीटा फलन (भौतिकी) में योगदान के माध्यम से होता है।

यह भी देखें

संदर्भ

  • Stephen P. Martin, A Supersymmetry Primer. arXiv:hep-ph/9709356.
  • B. Mielnik and O. Rosas-Ortiz, "Factorization: Little or great algorithm?", J. Phys. A: Math. Gen. 37: 10007-10035, 2004
  • Cooper, Fred; Khare, Avinash; Sukhatme, Uday (1995). "Supersymmetric quantum mechanics". Physics Reports. 251: 267–385. arXiv:hep-th/9405029. Bibcode:1995PhR...251..267C. doi:10.1016/0370-1573(94)00080-M.