परासांख्यिकी
Statistical mechanics |
---|
This article needs additional citations for verification. (September 2010) (Learn how and when to remove this template message) |
क्वांटम यांत्रिकी और सांख्यिकीय यांत्रिकी में, पैरास्टैटिस्टिक्स बेहतर ज्ञात कण सांख्यिकी मॉडल (बोस-आइंस्टीन सांख्यिकी, फर्मी-डिराक सांख्यिकी और मैक्सवेल-बोल्ट्जमैन सांख्यिकी) के कई विकल्पों में से एक है। अन्य विकल्पों में एनीओनिक आँकड़े और ब्रैड आँकड़े शामिल हैं, इन दोनों में कम स्पेसटाइम आयाम शामिल हैं। हर्बर्ट एस. ग्रीन[1] 1953 में पैरास्टैटिस्टिक्स के निर्माण का श्रेय दिया जाता है।[2][3]
औपचारिकता
एन समान कणों की एक प्रणाली के ऑपरेटर बीजगणित पर विचार करें। यह एक तारा-बीजगणित है|*-बीजगणित। एक एस हैNसमूह (क्रम एन का सममित समूह) एन कणों के क्रमपरिवर्तन की इच्छित व्याख्या के साथ ऑपरेटर बीजगणित पर समूह क्रिया (गणित)। क्वांटम यांत्रिकी को भौतिक अर्थ वाले वेधशालाओं पर ध्यान केंद्रित करने की आवश्यकता होती है, और वेधशालाओं को एन कणों के सभी संभावित क्रमपरिवर्तन के तहत अपरिवर्तनीय (गणित) होना होगा। उदाहरण के लिए, मामले में एन = 2, आर2− आर1 अवलोकन योग्य नहीं हो सकता क्योंकि यदि हम दो कणों को स्विच करते हैं तो यह संकेत बदल देता है, लेकिन दो कणों के बीच की दूरी: |आर2− आर1| एक वैध अवलोकनीय है.
दूसरे शब्दों में, अवलोकन योग्य बीजगणित को एस की कार्रवाई के तहत *-उप बीजगणित अपरिवर्तनीय होना होगाN(ध्यान दें कि इसका मतलब यह नहीं है कि ऑपरेटर बीजगणित का प्रत्येक तत्व एस के अंतर्गत अपरिवर्तनीय हैNएक अवलोकनीय है)। यह अलग-अलग सुपरसेलेक्शन क्षेत्रों की अनुमति देता है, प्रत्येक को एस के यंग आरेख द्वारा मानकीकृत किया जाता हैN.
विशेष रूप से:
- क्रम p (जहाँ p एक धनात्मक पूर्णांक है) के N समरूप 'पैराबोसन' के लिए, अनुमेय युवा आरेख वे सभी हैं जिनमें p या उससे कम पंक्तियाँ हैं।
- ऑर्डर पी के एन समरूप 'पैराफर्मियन' के लिए, स्वीकार्य यंग आरेख वे सभी हैं जिनमें पी या उससे कम कॉलम हैं।
- यदि पी 1 है, तो यह क्रमशः बोस-आइंस्टीन और फर्मी-डिराक आंकड़ों तक कम हो जाता है[clarification needed].
- यदि p मनमाने ढंग से बड़ा (अनंत) है, तो यह मैक्सवेल-बोल्ट्ज़मैन आँकड़ों तक कम हो जाता है।
त्रिरेखीय संबंध
त्रिरेखीय रूपान्तरण संबंधों को संतुष्ट करने वाले सृजन और विनाश संचालक हैं[2]
क्वांटम क्षेत्र सिद्धांत
ऑर्डर पी का एक पैराबोसॉन क्षेत्र, जहां यदि x और y अंतरिक्ष की तरह अलग-अलग बिंदु हैं, और अगर जहां [,] कम्यूटेटर है और {,} एंटीकम्यूटेटर है। ध्यान दें कि यह स्पिन-सांख्यिकी प्रमेय से असहमत है, जो बोसॉन के लिए है न कि पैराबोसन के लिए। सममित समूह एस जैसा कोई समूह हो सकता हैpφ पर कार्य करना(i)s. वेधशालाओं को संचालिका होना चाहिए जो विचाराधीन समूह के अंतर्गत अपरिवर्तनीय (गणित) हों। हालाँकि, ऐसी समरूपता का अस्तित्व आवश्यक नहीं है।
एक पैराफर्मियन क्षेत्र क्रम p का, जहाँ यदि x और y स्थानिक-पृथक बिंदु हैं, और अगर . अवलोकन योग्य वस्तुओं के बारे में वही टिप्पणी इस आवश्यकता के साथ लागू होगी कि उनके पास ग्रेडिंग के तहत बीजगणित को भी वर्गीकृत किया गया है जहां ψs में विषम ग्रेडिंग है।
पैराफर्मियोनिक और पैराबोसोनिक बीजगणित उन तत्वों द्वारा उत्पन्न होते हैं जो कम्यूटेशन और एंटीकम्यूटेशन संबंधों का पालन करते हैं। वे क्वांटम यांत्रिकी के सामान्य फर्मिओनिक बीजगणित और बोसोनिक बीजगणित का सामान्यीकरण करते हैं।[4] डिराक बीजगणित और डफिन-केमर-पेटियाउ बीजगणित क्रमशः क्रम पी = 1 और पी = 2 के लिए पैराफर्मियोनिक बीजगणित के विशेष मामलों के रूप में दिखाई देते हैं।[5]
स्पष्टीकरण
ध्यान दें कि यदि x और y अंतरिक्ष-समान-पृथक बिंदु हैं, तो φ(x) और φ(y) न तो यात्रा करते हैं और न ही एंटीकम्यूट करते हैं जब तक कि p=1 न हो। यही टिप्पणी ψ(x) और ψ(y) पर भी लागू होती है। इसलिए, यदि हमारे पास n स्थानिक रूप से अलग किए गए बिंदु x हैं1, ..., एक्सn,
x पर n समान पैराबोसन बनाने के अनुरूप है1,..., एक्सn. इसी प्रकार,
n समरूप पैराफर्मियन बनाने के अनुरूप है। क्योंकि ये क्षेत्र न तो आवागमन करते हैं और न ही प्रतिगमन करते हैं
और
सममित समूह|एस में प्रत्येक क्रमपरिवर्तन π के लिए अलग-अलग स्थिति देता हैn.
हम एक क्रमपरिवर्तन ऑपरेटर को परिभाषित कर सकते हैं द्वारा
और
क्रमश। इसे तब तक अच्छी तरह से परिभाषित दिखाया जा सकता है केवल ऊपर दिए गए वैक्टर द्वारा फैली हुई अवस्थाओं तक ही सीमित है (अनिवार्य रूप से n समान कणों वाली अवस्थाएँ)। यह एकात्मक संचालक भी है। इसके अतिरिक्त, सममित समूह एस का एक ऑपरेटर-मूल्यवान समूह प्रतिनिधित्व हैnऔर इस प्रकार, हम इसकी व्याख्या एस की कार्रवाई के रूप में कर सकते हैंnएन-कण हिल्बर्ट स्पेस पर ही, इसे एकात्मक प्रतिनिधित्व में बदल दिया गया।
क्वांटम क्रोमोडायनामिक्स को पैरास्टैटिस्टिक्स का उपयोग करके पुन: तैयार किया जा सकता है, जिसमें क्वार्क ऑर्डर 3 के पैराफर्मियन होते हैं और ग्लूऑन ऑर्डर 8 के पैराबोसन होते हैं। ध्यान दें कि यह पारंपरिक दृष्टिकोण से अलग है जहां क्वार्क हमेशा एंटीकम्यूटेशन संबंधों और ग्लूऑन कम्यूटेशन संबंधों का पालन करते हैं।[6]
यह भी देखें
- पैरास्टैटिस्टिक्स और अधिक परंपरागत आंकड़ों के बीच रूपांतरण कैसे करें, इस पर परिवर्तन।[7]
संदर्भ
- ↑ "हर्बर्ट सिडनी (बर्ट) ग्रीन". Archived from the original on 2012-04-18. Retrieved 2011-10-30.
- ↑ 2.0 2.1 H.S. Green, A Generalized Method of Field Quantization. Phys. Rev. 90, 270–273 (1953).(c)
- ↑ Cattani, M.; Bassalo, J. M. F. (2009). "मध्यवर्ती सांख्यिकी, परासांख्यिकी, भिन्नात्मक सांख्यिकी और जेंटिलियोनिक सांख्यिकी". arXiv:0903.4773 [cond-mat.stat-mech].
- ↑ K. Kanakoglou, C. Daskaloyannis: Chapter 18 Bosonisation and Parastatistics, p. 207 ff., in: Sergei D. Silvestrov, Eugen Paal, Viktor Abramov, Alexander Stolin (eds.): Generalized Lie Theory in Mathematics, Physics and Beyond, 2008, ISBN 978-3-540-85331-2
- ↑ See citations in Plyushchay, Mikhail S; Michel Rausch de Traubenberg (2000). "Cubic root of Klein-Gordon equation". Physics Letters B. 477 (2000): 276–284. arXiv:hep-th/0001067. Bibcode:2000PhLB..477..276P. doi:10.1016/S0370-2693(00)00190-8. S2CID 16600516.
- ↑ Aldrovandi, R.; Lima, I.M. (February 1983). "प्रारंभिक ब्रह्मांड के लिए परासांख्यिकी और राज्य का समीकरण". Astrophysics and Space Science. 90 (1): 179–195. Bibcode:1983Ap&SS..90..179A. doi:10.1007/BF00651559. S2CID 119530259.
- ↑ Baker, David John; Halvorson, Hans; Swanson, Noel. "पैरास्टैटिस्टिक्स की पारंपरिकता" (PDF). An Archive for Preprints in Philosophy of Science. University of Pittsburgh. Retrieved 30 May 2018.