किलिंग सदिश क्षेत्र
गणित में, किलिंग सदिश क्षेत्र ऐसा सदिश क्षेत्र हैं जिसे अधिकांशतः किलिंग क्षेत्र नाम से भी जाना जाता है), इसका नाम विल्हेम किलिंग के नाम पर रखा गया था, [[रीमैनियन मैनीफोल्ड ]] (या स्यूडो-रीमैनियन मैनिफोल्ड) पर सदिश क्षेत्र है जो मीट्रिक टेंसर को संरक्षित करता है। किलिंग क्षेत्र ऐसा लाई समूह तथा आइसोमेट्री समूह हैं जिसके लिए लाई समूहों से संबद्ध होने वाली लाई बीजगणित अर्थात् किलिंग क्षेत्र द्वारा उत्पन्न होने वाले प्रवाह (ज्यामिति) मैनिफोल्ड की आइसोमेट्री (रीमैनियन ज्यामिति) को बनाती है। इसके लिए यह अधिक सरलता से प्रवाह समरूपता को उत्पन्न करता है, इस अर्थ यह हैं कि किसी वस्तु के प्रत्येक बिंदु को किलिंग सदिश की दिशा में समान दूरी पर ले जाने से वस्तु पर दूरियाँ विकृत नहीं होंगी।
परिभाषा
विशेष रूप से, सदिश क्षेत्र X किलिंग क्षेत्र है यदि मीट्रिक g के X के संबंध में लाई व्युत्पन्न विलुप्त हो जाता है:[1]
लेवी-सिविटा कनेक्शन के संदर्भ में, यह है
सभी सदिश Y और Z के लिए स्थानीय निर्देशांक में, यह किलिंग समीकरण के समान है[2]
यह स्थिति सहसंयोजक रूप में व्यक्त की जाती है। इसलिए इसे सभी समन्वय प्रणालियों में समझने के लिए इसे उपयोगी समन्वय प्रणाली में स्थापित करना पर्याप्त है।
उदाहरण
वृत्त पर किलिंग क्षेत्र
किसी वृत्त पर सदिश क्षेत्र जो वामावर्त को इंगित करता है, और इसके साथ प्रत्येक बिंदु पर इसकी समान लंबाई होती है, इसके आधार पर यह किलिंग सदिश क्षेत्र है, क्योंकि इस प्रकार इस सदिश क्षेत्र के साथ वृत्त पर प्रत्येक बिंदु को स्थानांतरित करने से वृत्त बस घूर्णन करता है।
अतिपरवलयिक तल पर किलिंग क्षेत्र
किलिंग सदिश क्षेत्र के लिए इसका सरलतम उदाहरण जो ऊपरी आधे तल पर है, इस प्रकार पोंकारे मीट्रिक जोड़ी से सुसज्जित होता हैं। इस प्रकार इसे सामान्यतः पोंकारे हाफ-प्लेन प्रारूप कहा जाता है और इसमें किलिंग सदिश क्षेत्र (मानक निर्देशांक का उपयोग करके) होता है। इसके आधार पर सहसंयोजक व्युत्पन्न के पश्चात यह सहज रूप से स्पष्ट होना चाहिए, जिसके लिए सदिश क्षेत्र (जिसकी छवि x-अक्ष के समानांतर है) द्वारा उत्पन्न अभिन्न वक्र के साथ मीट्रिक को स्थानांतरित करता है।
इसके अतिरिक्त मीट्रिक इससे स्वतंत्र है, जिससे हम तुरंत के लिए यह निष्कर्ष निकाल सकते हैं, इस आलेख में नीचे दिए गए परिणामों में से का उपयोग करके किलिंग क्षेत्र है।
ऊपरी अर्ध-तल प्रारूप का आइसोमेट्री समूह (या बल्कि, पहचान से जुड़ा घटक) है, (पोइंकारे हाफ-प्लेन प्रारूप देखें), और इस प्रकार अन्य दो किलिंग क्षेत्र जनरेटर की प्रतिक्रिया पर विचार करके प्राप्त किए जा सकते हैं, इस कारण ऊपरी आधे तल पर अन्य दो उत्पन्न करने वाले किलिंग क्षेत्र पर प्रसारित होता हैं, और इस प्रकार विशेष अनुरूप परिवर्तन को प्रदर्शित करता हैं।
2-गोले पर किलिंग क्षेत्र
दो-गोले के किलिंग क्षेत्र , या अधिक सामान्यतः -गोला सामान्य अंतर्ज्ञान से स्पष्ट होना चाहिए: घूर्णी समरूपता वाले क्षेत्रों में किलिंग क्षेत्र होने चाहिए जो किसी भी अक्ष के बारे में घूर्णन उत्पन्न करते हैं। अर्ताथ इस प्रकार हम उम्मीद करते हैं कि 3डी घूर्णन समूह SO(3) की प्रतिक्रिया के अनुसार समरूपता प्राप्त करना होता हैं। इस प्रकार प्राथमिक ज्ञान का उपयोग करके कि गोले को यूक्लिडियन क्षेत्र में एम्बेड किया जा सकता है, इस प्रकार किलिंग क्षेत्र के रूप का अनुमान लगाना तुरंत संभव है। यह सामान्य रूप से संभव नहीं है, और इसलिए यह उदाहरण बहुत ही सीमित शैक्षिक मूल्य का है।
2-गोले के लिए पारंपरिक चार्ट अंतर्निहित है, इसके आधार पर कार्तीय निर्देशांक में द्वारा दिया गया है।
जिससे कि ऊँचाई को मापता है, और पैरामीटर्स के बारे में घूर्णन -एक्सिस पर होता हैं।
मानक कार्टेशियन मीट्रिक को वापस खींचना गोले पर मानक मीट्रिक देता है,
- .
सहज रूप से, किसी भी अक्ष के चारों ओर घूमना आइसोमेट्री होना चाहिए। इस प्रकार इस चार्ट में सदिश क्षेत्र -एक्सिस के बारे में घूर्णन उत्पन्न करता है:
इन निर्देशांकों में, मीट्रिक घटक के लिए सभी स्वतंत्र हैं, जो यह किलिंग क्षेत्र दर्शाता है
सदिश क्षेत्र
किलिंग क्षेत्र नहीं है, समन्वय मीट्रिक में स्पष्ट रूप से दिखाई देता है। जिसके द्वारा उत्पन्न प्रवाह उत्तर से दक्षिण की ओर जाता है, इस प्रकार उत्तरी ध्रुव के बिंदु दूर-दूर फैलते हैं, दक्षिण के बिंदु साथ आते हैं। कोई भी परिवर्तन जो बिंदुओं को समीप या दूर ले जाता है वह आइसोमेट्री नहीं हो सकता, इसलिए ऐसी गति का जनक कोई किलिंग क्षेत्र नहीं हो सकता हैं।
जनरेटर के बारे में घूर्णन -एक्सिस के रूप में पहचाना जाता है।
एक दूसरा जनरेटर -अक्ष के चारों ओर घूमता है,
तीसरा जनरेटर, चारों ओर घूमने के लिए -अक्ष पर रहता है।
इन तीन जनरेटरों के रैखिक संयोजनों द्वारा दिया गया बीजगणित बंद हो जाता है, और इस प्रकार यह संबंधों का पालन करता है।
यह असत्य बीजगणित है।
इसके आधार पर और गोलाकार निर्देशांक के संदर्भ में देता है
और
ये तीन सदिश क्षेत्र वास्तव में किलिंग क्षेत्र हैं, इसे दो अलग-अलग विधियों से निर्धारित किया जा सकता है। इसकी स्पष्ट गणना बस के लिए स्पष्ट अभिव्यक्तियों को प्लग इन करें और का मान दिखाने के लिए निंदा करें, यह मुख्य रूप से सार्थक अभ्यास है, जिसे इस प्रकार वैकल्पिक रूप से कोई भी पहचान सकता है, इस प्रकार और यूक्लिडियन क्षेत्र में आइसोमेट्री के जनरेटर हैं, और चूंकि गोले पर मीट्रिक यूक्लिडियन क्षेत्र में मीट्रिक से विरासत में मिली है, इसलिए आइसोमेट्री भी विरासत में मिली है।
ये तीन किलिंग क्षेत्र बीजगणित के लिए जनरेटर का पूरा सेट बनाते हैं। इस प्रकार ये अद्वितीय नहीं हैं: इन तीन क्षेत्रों का कोई भी रैखिक संयोजन अभी भी किलिंग क्षेत्र है।
इस उदाहरण के बारे में ध्यान देने योग्य कई सूक्ष्म बातें हैं।
- तीन क्षेत्र विश्व स्तर पर गैर-शून्य नहीं हैं, वास्तव में, क्षेत्र उत्तरी और दक्षिणी ध्रुवों पर लुप्त हो जाता है, इस प्रकार वैसे ही और भूमध्य रेखा पर एंटीपोड पर विलुप्त हो जाते हैं। इसे समझने का तरीका हेयरी बॉल प्रमेय का परिणाम है। इस प्रकार के धब्बों के लिए यह मान, कार्टन अपघटन में सममित स्थान की सामान्य मान है। इस प्रकार मैनिफ़ोल्ड के प्रत्येक बिंदु पर, किलिंग क्षेत्र का बीजगणित स्वाभाविक रूप से दो भागों में विभाजित हो जाता है, इस प्रकार के भाग जो मैनिफ़ोल्ड के स्पर्शरेखा है, और दूसरा भाग जो लुप्त हो रहा है (उस बिंदु पर जहां अपघटन किया जा रहा है)।
- तीन क्षेत्र और इकाई लंबाई के नहीं हैं। जिसके सामान्य गुणनखंड से विभाजित करके सामान्यीकरण किया जा सकता है, इस प्रकार इसके आधार पर तीनों भावों में प्रकट होता हैं। चूंकि इस स्थिति में, क्षेत्र अब सुचारू नहीं हैं: उदाहरण के लिए, उत्तरी और दक्षिणी ध्रुवों पर एकवचन (अभेद्य) है।
- तीन क्षेत्र बिंदु-वार ऑर्थोगोनल नहीं हैं, वास्तव में ये नहीं हो सकते हैं, क्योंकि किसी भी बिंदु पर, स्पर्शरेखा-तल द्वि-आयामी है, जबकि इस प्रकार तीन सदिश हैं। गोले पर किसी भी बिंदु को देखते हुए, कुछ रैखिक संयोजन होता है, इसके आधार पर और वह विलुप्त हो जाता है: ये तीन सदिश उस बिंदु पर द्वि-आयामी स्पर्शरेखा क्षेत्र के लिए अति-पूर्ण आधार हैं।
- प्राथमिक ज्ञान कि गोले को यूक्लिडियन क्षेत्र में एम्बेड किया जा सकता है, और इस प्रकार इस एम्बेडिंग से मीट्रिक प्राप्त होता है, जिससे इस प्रकार किलिंग क्षेत्र की सही संख्या के बारे में भ्रमित अंतर्ज्ञान हो सकता है जिसकी कोई उम्मीद कर सकता है। इस प्रकार के एम्बेडिंग के अतिरिक्त अंतर्ज्ञान सुझाव दे सकता है कि रैखिक रूप से स्वतंत्र जनरेटर की संख्या स्पर्शरेखा बंडल के आयाम से अधिक नहीं होगी। अंततः किसी भी बिंदु को मैनिफ़ोल्ड पर स्थिर करके केवल उन्हीं दिशाओं में आगे बढ़ सकता है जो स्पर्शरेखा हैं। इस प्रकार 2-गोले के लिए स्पर्शरेखा बंडल का आयाम दो है, और फिर भी तीन किलिंग क्षेत्र पाए जाते हैं। फिर यह आश्चर्य सममित स्थानों की सामान्य मान है।
मिन्कोवस्की क्षेत्र में किलिंग क्षेत्र
मिन्कोव्स्की क्षेत्र के किलिंग क्षेत्र 3 क्षेत्र अनुवाद, समय अनुवाद, घूर्णन के तीन जनरेटर (छोटा समूह) और लोरेंत्ज़ बूस्ट के तीन जनरेटर हैं। ये हैं
- समय और स्थान अनुवाद
- सदिश क्षेत्र तीन घुमाव उत्पन्न करते हैं, जिन्हें अधिकांशतः जे जनरेटर कहा जाता है,
- सदिश क्षेत्र तीन बूस्ट उत्पन्न करते हैं, K जनरेटर,
बूस्ट और घूर्णन लोरेंत्ज़ समूह उत्पन्न करते हैं। क्षेत्र-समय अनुवादों के साथ, यह पोंकारे समूह के लिए लाई बीजगणित बनाता है।
समतल स्थान में किलिंग क्षेत्र
यहां हम सामान्य समतल स्थान के लिए किलिंग क्षेत्र प्राप्त करते हैं।
किलिंग के समीकरण और कोसदिश के लिए रिक्की पहचान से,
(स्यूडो सूचकांक संकेतन का उपयोग करके) जहाँ रीमैन वक्रता टेंसर है, निम्नलिखित पहचान किलिंग क्षेत्र के लिए सिद्ध हो सकती है:
जब आधार मैनीफोल्ड हो जाता है, यहाँ पर समतल स्थान है, अर्थात यूक्लिडियन स्थान या स्यूडो-यूक्लिडियन स्थान मिन्कोव्स्की क्षेत्र के लिए हम वैश्विक फ्लैट निर्देशांक चुन सकते हैं, जैसे कि इस प्रकार इन निर्देशांक में, लेवी-सिविटा कनेक्शन और इसलिए रीमैन वक्रता हर जगह विलुप्त हो जाती है, जिससे
किलिंग समीकरण को एकीकृत और लागू करने से हमें सामान्य समाधान लिखने की अनुमति मिलती है, जैसे
जहाँ एंटीसिमेट्रिक है, जिसका उचित मान और को लेकर हमें समतल स्थान की आइसोमेट्री के सामान्यीकृत पोंकारे बीजगणित के लिए आधार मिलता है:
ये क्रमशः स्यूडो-घूर्णन (घूर्णन और बूस्ट) और अनुवाद उत्पन्न करते हैं। इसके आधार पर सहज रूप से ये प्रत्येक बिंदु पर (स्यूडो)-मीट्रिक को संरक्षित करते हैं।
कुल आयाम के स्यूडो- यूक्लिडियन स्थान के लिए, कुल मिलाकर हैं, इस प्रकार जनरेटर, समतल स्थान को अधिकतम सममित बनाते हैं। यह इस प्रकार संख्या अधिकतम सममित स्थानों के लिए सामान्य है। अधिकतम सममित स्थानों को समतल स्थान के उप-विभाजनों के रूप में माना जा सकता है, जो निरंतर उचित दूरी की सतहों के रूप में उत्पन्न होते हैं
जिसमें अनिश्चितकालीन ऑर्थोगोनल समूह O(p,q) समरूपता को प्रदर्शित करता है। यदि सबमैनिफोल्ड में आयाम है, तो समरूपता के इस समूह में अपेक्षित आयाम है, तो असत्य समूह के रूप में प्रदर्शित होता हैं।
अनुमानतः, हम किलिंग क्षेत्र बीजगणित का आयाम प्राप्त कर सकते हैं। किलिंग के समीकरण का उपचार पहचान के साथ दूसरे क्रम के अंतर समीकरणों की प्रणाली के रूप में, हम का मूल्य निर्धारित कर सकते हैं, इस प्रकार किसी बिंदु पर प्रारंभिक डेटा दिए जाने पर प्रारंभिक डेटा और निर्दिष्ट करता है, अपितु किलिंग का समीकरण यह लगाता है कि सहसंयोजक व्युत्पन्न एंटीसिमेट्रिक है। इस प्रकार कुल मिलाकर है, जो प्रारंभिक डेटा का स्वतंत्र मान हैं।
ठोस उदाहरणों के लिए, समतल स्थान (मिन्कोव्स्की स्थान) और अधिकतम सममित स्थान (गोलाकार, अतिशयोक्तिपूर्ण स्थान) के उदाहरणों के लिए नीचे देखें।
सामान्य सापेक्षता में किलिंग क्षेत्र
सामान्य सापेक्षता में आइसोमेट्री पर चर्चा करने के लिए किलिंग क्षेत्र का उपयोग किया जाता है (जिसमें गुरुत्वाकर्षण क्षेत्रों द्वारा विकृत क्षेत्र समय की ज्यामिति को 4-आयामी स्यूडो-रिमैनियन मैनिफोल्ड के रूप में देखा जाता है)। इस प्रकार किसी स्थिर विन्यास में, जिसमें समय के साथ कुछ भी परिवर्तित नहीं होता है, इस प्रकार समय सदिश किलिंग सदिश होगा, और इस प्रकार किलिंग क्षेत्र समय में आगे की गति की दिशा में इंगित करेगा। उदाहरण के लिए, श्वार्ज़स्चिल्ड मीट्रिक में चार किलिंग क्षेत्र हैं: मीट्रिक इससे स्वतंत्र है, इसी प्रकार काल-सदृश संहार क्षेत्र है। इस प्रकार अन्य तीन घूर्णन के तीन जनरेटर हैं जिनकी चर्चा ऊपर की गई है। इसके आधार पर घूर्णन करते हुए ब्लैक होल के लिए केर मीट्रिक में केवल दो किलिंग क्षेत्र हैं: यहाँ पर इस प्रकार समय-जैसा क्षेत्र, और ब्लैक होल के घूर्णन की धुरी के बारे में घूर्णन उत्पन्न करने वाला क्षेत्र हैं।
सिटर क्षेत्र द्वारा और एंटी-डी सिटर क्षेत्र अधिकतम सममित स्थान हैं, जिसके लिए प्रत्येक स्वामित्व के आयामी संस्करण सामूहिक किलिंग वाला क्षेत्र हैं।
एक स्थिर समन्वय का किलिंग क्षेत्र
यदि मीट्रिक गुणांक कुछ समन्वित आधार पर किसी निर्देशांक से स्वतंत्र हैं, तब इस प्रकार किलिंग सदिश है, जहां क्रोनकर डेल्टा है।[3]
इसे सिद्ध करने के लिए, आइए मान लें तब और
अब आइए किलिंग की स्थिति पर नजर डालें
और से अंतःखण्डित करने की स्थिति बन जाती है
वह है, जिसमें कौन सा सही है।
- उदाहरण के लिए, भौतिक अर्थ यह है कि, यदि कोई भी मीट्रिक गुणांक समय का कार्य नहीं है, तो मैनिफोल्ड में स्वचालित रूप से समय-जैसा किलिंग सदिश होना चाहिए।
- आम आदमी के शब्दों में, यदि कोई वस्तु समय के साथ रूपांतरित या विकसित नहीं होती है, (जब समय बीत जाता है), तो इस प्रकार समय बीतने से वस्तु के माप में कोई परिवर्तन नहीं आएगा। इस प्रकार से तैयार किए गए, परिणाम तनातनी के समान लगता है, अपितु किसी को यह समझना होगा कि उदाहरण बहुत अधिक काल्पनिक है: इस प्रकार किलिंग क्षेत्र बहुत अधिक जटिल और रोचक स्थितियों पर भी लागू होते हैं।
इसके विपरीत, यदि मीट्रिक किलिंग क्षेत्र स्वीकार करता है, तो कोई जिसके लिए निर्देशांक बना सकता है, इन निर्देशांकों का निर्माण हाइपरसर्फेस लेकर किया जाता है, इस प्रकार ऐसा है कि कहीं भी स्पर्शरेखा नहीं करता है, इस प्रकार पर निर्देशांक लेते हैं, फिर स्थानीय निर्देशांक परिभाषित करें, जहाँ इस प्रकार के अभिन्न वक्र के साथ पैरामीटर को दर्शाता है, जिसके लिए पर आधारित पर इन निर्देशांकों में, लाई व्युत्पन्न समन्वय व्युत्पन्न में कम हो जाता है, अर्थात,
और किलिंग क्षेत्र की परिभाषा के अनुसार बाईं ओर का भाग विलुप्त हो जाता है।
गुण
एक किलिंग क्षेत्र किसी बिंदु पर सदिश और उसके ग्रेडिएंट (अर्ताथ बिंदु पर क्षेत्र के सभी सहसंयोजक व्युत्पन्न) द्वारा विशिष्ट रूप से निर्धारित की जाती है।
दो किलिंग क्षेत्र के सदिश क्षेत्र का लाई ब्रैकेट अभी भी किलिंग क्षेत्र है। इसके आधार पर मैनिफोल्ड एम पर किलिंग क्षेत्र इस प्रकार एम पर सदिश क्षेत्र का ले बीजगणित बनाती हैं। यदि एम पूर्ण अनेक गुना है तो यह मैनिफोल्ड के आइसोमेट्री समूह का ले बीजगणित है। इस प्रकार आइसोमेट्रीज़ के संक्रमणीय समूह के साथ रीमैनियन मैनिफोल्ड सजातीय स्थान है।
सघन स्थान मैनिफोल्ड्स के लिए
- ऋणात्मक रिक्की वक्रता का तात्पर्य है कि कोई गैर-तुच्छ (गैर-शून्य) किलिंग क्षेत्र नहीं हैं।
- नॉनपॉज़िटिव रिक्की वक्रता का तात्पर्य है कि कोई भी किलिंग क्षेत्र समानांतर है। अर्ताथ किसी भी सदिश क्षेत्र के साथ सहसंयोजक व्युत्पन्न समान रूप से शून्य है।
- यदि अनुभागीय वक्रता धनात्मक है और एम का आयाम सम है, तो किलिंग क्षेत्र में शून्य होना चाहिए।
प्रत्येक किलिंग सदिश क्षेत्र का सहसंयोजक विचलन विलुप्त हो जाता है।
अगर किलिंग सदिश क्षेत्र है और तो फिर, यह हॉज सिद्धांत है हार्मोनिक फलन है।
अगर किलिंग सदिश क्षेत्र है, और तो फिर, यह हॉज सिद्धांत या हार्मोनिक पी-फॉर्म है।
जियोडेसिक्स
प्रत्येक किलिंग सदिश मात्रा से मेल खाता है, जिसे हैमिल्टनियन प्रवाह के रूप में जियोडेसिक्स के साथ संरक्षित किया जाता है। इस प्रकार यह संरक्षित मात्रा किलिंग सदिश और जियोडेसिक टेंगेंट सदिश के बीच का मीट्रिक उत्पाद है। स्पर्शरेखा सदिश के साथ एफ़िनली पैरामीट्रिज़्ड जियोडेसिक के साथ फिर किलिंग सदिश दिया गया हैं, जिसके लिए की मात्रा से संरक्षित है:
यह समरूपता के साथ स्पेसटाइम में गतियों का विश्लेषणात्मक अध्ययन करने में सहायता करता है।[4]
तनाव-ऊर्जा टेंसर
एक संरक्षित, सममित टेंसर दिया गया है, यह संतोषजनक हैं तथा इसका मान और के समान हैं, जो इस प्रकार तनाव-ऊर्जा टेंसर और किलिंग सदिश के विशिष्ट गुण हैं, हम संरक्षित मात्रा का निर्माण कर सकते हैं, इस प्रकार के लिए इसे संतुष्टि करने वाला मान इस प्रकार हैं-
कार्टन अपघटन
जैसा कि ऊपर उल्लेख किया गया है, दो किलिंग क्षेत्र के सदिश क्षेत्र का लाई ब्रैकेट अभी भी किलिंग क्षेत्र है। इस प्रकार द किलिंग क्षेत्र मैनिफोल्ड पर इस प्रकार असत्य बीजगणित बनता है, इसके कारण सभी सदिश क्षेत्र पर बिंदु का चयन करता हैं, इसके लिए बीजगणित दो भागों में विघटित किया जा सकता है:
और
जहाँ सहसंयोजक व्युत्पन्न है. ये दोनों भाग को सामान्य रूप से एक-दूसरे को काटते हैं, अपितु सामान्यतः से विभाजित नहीं होते हैं। उदाहरण के लिए, यदि रीमैनियन सजातीय स्थान है, हमारे पास है यदि केवल रीमैनियन सममित स्थान है।[5]
सहज रूप से, की सममिति स्थानीय रूप से सबमैनिफोल्ड को परिभाषित करें, जिसके लिए कुल स्थान का, और किलिंग क्षेत्र दिखाते हैं कि उस सबमैनिफोल्ड के साथ कैसे स्लाइड किया जाए। वे इस प्रकार उस उपमान के स्पर्शरेखा स्थान का विस्तार करते हैं। इस प्रकार स्पर्शरेखा स्थान उस बिंदु पर समूह क्रिया प्रतिक्रिया के प्रकार अभिनय करने वाले आइसोमेट्री के समान आयाम होना चाहिए। अर्थात व्यक्ति अपेक्षा करता है फिर भी, सामान्य तौर पर, किलिंग क्षेत्र की संख्या उस स्पर्शरेखा स्थान के आयाम से बड़ी होती है। यह कैसे हो सकता है? इसका उत्तर यह है कि अतिरिक्त किलिंग क्षेत्र अनावश्यक हैं। इस प्रकार सभी को मिलाकर, क्षेत्र किसी विशेष चयनित बिंदु पर स्पर्शरेखा स्थान के लिए अति-पूर्ण आधार प्रदान करते हैं, उस विशेष बिंदु पर रैखिक संयोजनों को विलुप्त किया जा सकता है। इसे 2-गोले पर किलिंग क्षेत्र के उदाहरण में देखा गया था: 3 किलिंग क्षेत्र हैं, इस प्रकार किसी भी बिंदु पर, दो उस बिंदु पर स्पर्शरेखा स्थान का विस्तार करते हैं, और तीसरा अन्य दो का रैखिक संयोजन है। किन्हीं दो परिभाषाओं के लिए को चुनना शेष पतित रैखिक संयोजन ऑर्थोगोनल स्थान को परिभाषित करते हैं।
कार्टन का समावेश
कार्टन समावेश को जियोडेसिक की दिशा को प्रतिबिंबित करने या उलटने के रूप में परिभाषित किया गया है। इस प्रकार इसका अंतर स्पर्शरेखा की दिशा को जियोडेसिक में बदल देता है। यह मानक का रैखिक संचालिका है, इसमें आइजन मान +1 और -1 के दो अपरिवर्तनीय उप-स्थान हैं। ये दो उपस्थान और क्रमशः संगत हैं।
इसे और अधिक सटीक बनाया जा सकता है, इस प्रकार किसी बिंदु पर तय करना होता हैं, इस प्रकार जियोडेसिक पर विचार करें, जिसके लिए इस प्रकार के माध्यम से गुजरते हुए ,के मान के साथ इन्वॉल्वमेंट (गणित) परिभाषित किया जाता है।
यह मानचित्र में समावेशित हो जाता है, जब किलिंग क्षेत्र के साथ जियोडेसिक्स तक सीमित किया जाता है, तो यह इस प्रकार स्पष्ट रूप से आइसोमेट्री भी है। इसे विशिष्ट रूप से परिभाषित किया गया है।
यहाँ पर किलिंग क्षेत्र द्वारा उत्पन्न आइसोमेट्री का समूह बनें। फलन द्वारा इसे परिभाषित किया जाता हैं।
इस समीकरण की समरूपता है, यह अतिसूक्ष्म है।
कार्टन समावेश असत्य बीजगणित समरूपता है
इसके कारण सभी के लिए उपस्थान कार्टन समावेशन के अंतर्गत विषम समता है, जहाँ सम समता है, अर्थात्, बिंदु पर कार्टन के उपस्थित होने को दर्शाता है, जैसा किसी के पास
और
जहाँ पहचान मानचित्र है। इससे यह निष्कर्ष निकलता है कि उपस्थान का असत्य उपबीजगणित है , जिसके कारण यह मान प्राप्त होता हैं।
चूँकि ये सम और विषम समता वाले उपस्थान हैं, इसलिए लाई कोष्ठक विभाजित हो जाते हैं
और
उपरोक्त अपघटन सभी बिंदुओं पर लागू होता है, इसके आधार पर के लिए सममित स्थान , के प्रमाण जोस्ट में पाए जाते हैं।[6] ये अधिक सामान्य परिवेश में भी हैं, अपितु आवश्यक नहीं कि वे मैनिफोल्ड के सभी बिंदुओं पर हों।
सममित स्थान के विशेष मामले के लिए, किसी के पास का स्पष्ट रूप है अर्थात्, किलिंग क्षेत्र सममित स्थान के संपूर्ण स्पर्शरेखा स्थान को फैलाते हैं। समान रूप से, वक्रता टेंसर स्थानीय रूप से सममित स्थानों पर सहसंयोजक रूप से स्थिर होता है, और इसलिए ये स्थानीय रूप से समानांतर होते हैं, यह कार्टन-एम्ब्रोस-हिक्स प्रमेय है।
सामान्यीकरण
अनुरूप किलिंग सदिश क्षेत्र को परिभाषित करने के लिए किलिंग सदिश क्षेत्र के अनुरूप सामान्यीकृत किया जा सकता है, यहाँ कुछ अदिश राशि के लिए अनुरूप मानचित्र के पैरामीटर समूहों के व्युत्पन्न अनुरूप किलिंग क्षेत्र हैं।
- [[ टेन्सर को खत्म करना ]] क्षेत्र सममित टेंसर क्षेत्र टी हैं जैसे कि सममिति का ट्रेस-मुक्त भाग विलुप्त हो जाता है, इस प्रकार किलिंग टेंसर वाले मैनिफोल्ड्स के उदाहरणों में केर स्पेसटाइम और एफआरडब्ल्यू ब्रह्मांड विज्ञान सम्मिलित हैं।[7]
- यदि हम आइसोमेट्री के समूह के अतिरिक्त उस पर कोई ली समूह जी समूह प्रतिक्रिया (गणित) लेते हैं, तो किलिंग सदिश क्षेत्र को किसी भी मैनिफोल्ड एम (संभवतः मीट्रिक के बिना) पर भी परिभाषित किया जा सकता है।[8] इस व्यापक अर्थ में, किलिंग सदिश क्षेत्र समूह क्रिया द्वारा G पर सही अपरिवर्तनीय सदिश क्षेत्र को आगे बढ़ाना है। यदि समूह क्रिया प्रभावी है, तो किलिंग सदिश क्षेत्र का स्थान लाई बीजगणित जी के समरूपी है।
यह भी देखें
- एफ़िन सदिश क्षेत्र
- वक्रता संरेखण
- समरूप सदिश क्षेत्र
- किलिंग प्रारूप
- क्षितिज किलिंग
- स्पिनर किलिंग
- द्रव्य संरेखण
- स्पेसटाइम समरूपता
संदर्भ
- ↑ Jost, Jurgen (2002). रीमैनियन ज्यामिति और ज्यामितीय विश्लेषण. Berlin: Springer-Verlag. ISBN 3-540-42627-2.
- ↑ Adler, Ronald; Bazin, Maurice; Schiffer, Menahem (1975). सामान्य सापेक्षता का परिचय (Second ed.). New York: McGraw-Hill. ISBN 0-07-000423-4.. See chapters 3, 9.
- ↑ Misner, Thorne, Wheeler (1973). आकर्षण-शक्ति. W H Freeman and Company. ISBN 0-7167-0344-0.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Carroll, Sean (2004). Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley. pp. 133–139. ISBN 9780805387322.
- ↑ Olmos, Carlos; Reggiani, Silvio; Tamaru, Hiroshi (2014). The index of symmetry of compact naturally reductive spaces. Math. Z. 277, 611–628. DOI 10.1007/s00209-013-1268-0
- ↑ Jurgen Jost, (2002) "Riemmanian Geometry and Geometric Analysis" (Third edition) Springer. (See section 5.2 pages 241-251.}
- ↑ Carroll, Sean (2004). Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley. pp. 263, 344. ISBN 9780805387322.
- ↑ Choquet-Bruhat, Yvonne; DeWitt-Morette, Cécile (1977), Analysis, Manifolds and Physics, Amsterdam: Elsevier, ISBN 978-0-7204-0494-4