विशिष्ट समुच्चय

From Vigyanwiki
Revision as of 11:41, 5 December 2023 by alpha>Abhishekk

सूचना सिद्धांत में, विशिष्ट समुच्चय अनुक्रमों का एक समुच्चय होता है जिसकी संभावना उनके स्रोत वितरण की एन्ट्रापी की नकारात्मक शक्ति से दो तक बढ़ जाती है। इस समुच्चय की कुल संभाव्यता एक के करीब होना एसिम्प्टोटिक समविभाजन गुण (एईपी) का परिणाम है जो बड़ी संख्याओं का एक प्रकार का कानून है। विशिष्टता की धारणा केवल अनुक्रम की संभावना से संबंधित है न कि वास्तविक अनुक्रम से।

यह संपीड़न सिद्धांत में महत्वपूर्ण है क्योंकि यह सूचना को संपीड़ित करने के लिए एक सिद्धांतिक तरीका प्रदान करता है, जिससे हमें किसी भी अनुक्रम Xn को nH(X) बिट का औसत से प्रदर्शित करने की संभावना होती है, और, इसलिए, एक स्रोत से सूचना की माप के रूप में एंट्रोपी का उपयोग को स्वीकृति मिलती है।

एईपी को स्थिर एर्गोडिक प्रक्रियाओं के एक बड़े वर्ग के लिए भी सिद्ध किया जा सकता है, जिससे अधिक सामान्य मामलों में विशिष्ट समुच्चय को परिभाषित किया जा सकता है।

(दुर्बल) विशिष्ट अनुक्रम (दुर्बल विशिष्टता, एन्ट्रापी विशिष्टता)

यदि एक अनुक्रम x₁, ..., xₙ को एक i.i.d. वितरण X से निर्धारित एक सीमित वर्णमाला पर खींचा गया है, तो सामान्य समुह, Aε(n), उन सृष्टियों को परिभाषित करता है जो निम्नलिखित शर्तों को संतुष्ट करते हैं:

जहाँ

X की सूचना एन्ट्रापी है। उपरोक्त संभावना केवल 2n ε के कारक के भीतर होनी चाहिए। सभी पक्षों पर लघुगणक लेने और -n से विभाजित करने पर, इस परिभाषा को समकक्ष रूप से कहा जा सकता है

आई.आई.डी. अनुक्रम के लिए, चूँकि

हमें यह निम्लिखित और प्राप्त होता है

बड़ी संख्याओं के नियम के अनुसार, पर्याप्त रूप से बड़े n के लिए

गुण

सामान्य समुह की एक आवश्यक विशेषता यह है कि यदि कोई व्यक्ति वितरण X से बड़ी संख्या n के स्वतंत्र यादृच्छिक सैंपल खींचता है, तो परिणाम स्वरूपी अनुक्रम (x₁, x₂, ..., xₙ) संभावना से बहुत बड़े होने की संभावना है कि सामान्य समुह का सदस्य हो, हालांकि सामान्य समुह सभी संभावित अनुक्रमों का केवल एक छोटा हिस्सा होता है। औपचारिक रूप से, किसी भी के लिए ऐसा चयन किया जा सकता है जिस प्रकार:

  1. X(n) से एक अनुक्रम Aε(n) से निकाले जाने की संभावना 1 - ε, यानी से अधिक है
  2. यदि से अधिक वितरण एक समान नहीं है, तो अनुक्रमों का अंश जो सामान्य है
चूँकि n बहुत बड़ा हो जाता है, के बाद से जहाँ , की कार्डिनैलिटी है।

सामान्य स्टोकास्टिक प्रक्रिया {X(t)} के लिए, जिसमें AEP है, (कमजोर रूप से) सामान्य समुह को समरूप रूप से परिभाषित किया जा सकता है, जिसमें p(x₁, x₂, ..., xₙ) को p(x₀τ) से बदला जाता है (अर्थात, सम्पल के प्रायिक टाइम इंटरवल [0, τ] तक सीमित होने की संभावना), n प्रक्रिया की समय अंतराल में की गई स्वतंत्रता होती है और H(X) एन्ट्रापी दर होती है। यदि प्रक्रिया सतत मूल्यवान है, तो स्थानीय एंट्रोपी का बजाय विभेदक एन्ट्रापी का उपयोग किया जाता है।

उदाहरण

प्रति-सहज ज्ञान के विपरीत, सबसे संभावित अनुक्रम अक्सर विशिष्ट समुच्चय का सदस्य नहीं होता है। उदाहरण के लिए, मान लें कि X, p(0)=0.1 और p(1)=0.9 के साथ एक i.i.d Bernoulli यादृच्छिक चर है। n स्वतंत्र परीक्षणों में, चूँकि p(1)>p(0), परिणाम का सबसे संभावित क्रम सभी 1, (1,1,...,1) का अनुक्रम है। यहां X की एन्ट्रॉपी H(X)=0.469 है, जबकि

तो यह अनुक्रम सामान्य समुह में नहीं है क्योंकि इसकी औसत लघुगामी संभावना चाहे हम n की कितनी भी बड़ी मान लें, यह कभी भी यादृच्छिक प्रतिस्थान X की एंट्रोपी के करीब नहीं आ सकती है।

बर्नौली यादृच्छिक चर के लिए, विशिष्ट समुच्चय में एन स्वतंत्र परीक्षणों में 0 और 1 की औसत संख्या वाले अनुक्रम होते हैं। इसे आसानी से प्रदर्शित किया जा सकता है: यदि p(1) = p और p(0) = 1-p, तो m 1 के साथ n परीक्षणों के लिए, हमारे पास है

बर्नौली परीक्षणों के अनुक्रम में 1 की औसत संख्या m = np है। इस प्रकार, हमारे पास है

इस उदाहरण के लिए, यदि n=10, तो विशिष्ट समुच्चय में वे सभी अनुक्रम शामिल होते हैं जिनमें संपूर्ण अनुक्रम में एक 0 होता है। यदि p(0)=p(1)=0.5, तो प्रत्येक संभावित बाइनरी अनुक्रम विशिष्ट समुच्चय से संबंधित है।

दृढ़ विशिष्ट अनुक्रम (मजबूत विशिष्टता, अक्षर विशिष्टता)

यदि एक अनुक्रम x1, ..., xn एक परिमित या एक अनंत वर्णमाला पर परिभाषित कुछ निर्दिष्ट संयुक्त वितरण से तैयार किया गया है, तो दृढ़ता से विशिष्ट समुच्चय, Aε,strong(n) को अनुक्रमों के समुच्चय के रूप में परिभाषित किया गया है जो संतुष्ट करते हैं

जहां अनुक्रम में किसी विशिष्ट प्रतीक की घटनाओं की संख्या है।

यह दिखाया जा सकता है कि दृढ़ता से विशिष्ट अनुक्रम भी कमजोर रूप से विशिष्ट होते हैं (एक अलग स्थिरांक के साथ), और इसलिए नाम। हालाँकि, दोनों रूप समतुल्य नहीं हैं। स्मृतिहीन चैनलों के लिए प्रमेयों को सिद्ध करने के लिए मजबूत विशिष्टताओं के साथ काम करना अक्सर आसान होता है। हालाँकि, जैसा कि परिभाषा से स्पष्ट है, विशिष्टता का यह रूप केवल सीमित समर्थन वाले यादृच्छिक चर के लिए परिभाषित किया गया है।

संयुक्त रूप से विशिष्ट अनुक्रम

दो अनुक्रम और संयुक्त रूप से ε-विशिष्ट हैं यदि जोड़ी संयुक्त वितरण के संबंध में ε-विशिष्ट है और और दोनों अपने सीमांत वितरण और के संबंध में ε-विशिष्ट हैं। अनुक्रम के ऐसे सभी युग्मों के समुच्चय को द्वारा निरूपित किया जाता है। संयुक्त रूप से ε-विशिष्ट n-टपल अनुक्रमों को समान रूप से परिभाषित किया जाता है।

मान लीजिए और समान सीमांत वितरण और के साथ यादृच्छिक चर के दो स्वतंत्र अनुक्रम हैं। फिर किसी भी ε>0 के लिए, पर्याप्त रूप से बड़े n के लिए, संयुक्त रूप से विशिष्ट अनुक्रम निम्नलिखित गुणों को संतुष्ट करते हैं:

विशिष्टता के अनुप्रयोग

विशिष्ट समुच्चय एन्कोडिंग

सूचना सिद्धांत में, विशिष्ट समुच्चय एन्कोडिंग निश्चित लंबाई ब्लॉक कोड के साथ स्टोकेस्टिक स्रोत के विशिष्ट समुच्चय में केवल अनुक्रमों को एन्कोड करता है। चूँकि विशिष्ट समुच्चय का आकार लगभग 2nH(X) है, कोडिंग के लिए केवल nH(X) बिट्स की आवश्यकता होती है, जबकि साथ ही यह सुनिश्चित किया जाता है कि एन्कोडिंग त्रुटि की संभावना ε तक सीमित है। असम्बद्ध रूप से, एईपी द्वारा, यह हानिरहित है और स्रोत की एन्ट्रापी दर के बराबर न्यूनतम दर प्राप्त करता है।

विशिष्ट समुच्चय डिकोडिंग

सूचना सिद्धांत में, विशिष्ट समुच्चय डिकोडिंग का उपयोग यादृच्छिक कोडिंग के साथ मिलकर संचरित संदेश का अनुमान लगाने के लिए किया जाता है, जो एक कोडवर्ड के साथ होता है जो अवलोकन के साथ संयुक्त रूप से ε-विशिष्ट होता है। अर्थात

जहाँ क्रमशः संदेश अनुमान, संदेश का कोडवर्ड और अवलोकन हैं। को संयुक्त वितरण के संबंध में परिभाषित किया गया है जहां संक्रमण संभावना है जो चैनल आंकड़ों की विशेषता है, और कुछ इनपुट वितरण है जो यादृच्छिक कोडबुक में कोडवर्ड उत्पन्न करने के लिए उपयोग किया जाता है।

सार्वभौमिक शून्य (अक्षम)-परिकल्पना परीक्षण

सार्वभौमिक चैनल कोड

यह भी देखें

संदर्भ

  • C. E. Shannon, "A Mathematical Theory of Communication", Bell System Technical Journal, vol. 27, pp. 379–423, 623-656, July, October, 1948
  • Cover, Thomas M. (2006). "Chapter 3: Asymptotic Equipartition Property, Chapter 5: Data Compression, Chapter 8: Channel Capacity". Elements of Information Theory. John Wiley & Sons. ISBN 0-471-24195-4.
  • David J. C. MacKay. Information Theory, Inference, and Learning Algorithms Cambridge: Cambridge University Press, 2003. ISBN 0-521-64298-1