लेब्सग्यू-स्टिल्टजेस एकीकरण
माप सिद्धांत गणितीय विश्लेषण और गणित की संबंधित शाखाओं में, लेब्सग्यू-स्टिल्टजेस समाकलन रीमैन-स्टिल्टजेस समाकलन और लेब्सग्यू समाकलन दोनों को सामान्यीकृत करता है, और अधिक सामान्य माप-सैद्धांतिक संरचना में पूर्व के कई लाभों को संरक्षित करता है। लेब्सग्यू-स्टिल्टजेस समाकलन, लेब्सग्यू-स्टिल्टजेस माप के रूप में जाने जाने वाले माप के संबंध में सामान्य लेब्सग्यू समाकलन है, जो वास्तविक रेखा पर सीमित भिन्नता के किसी भी फलन से संबद्ध हो सकता है। लेब्सग्यू-स्टिल्टजेस माप नियमित बोरेल माप है, और इसके विपरीत वास्तविक रेखा पर प्रत्येक नियमित बोरेल माप इस प्रकार का होता है।
लेबेस्ग्यू-स्टिल्टजेस समाकलन, जिसका नाम हेनरी लियोन लेब्सग्यू और थॉमस जोआन्स स्टिल्टजेस के नाम पर रखा गया है, को जोहान रेडॉन के बाद लेबेस्गु-रेडॉन समाकलन या मात्र रेडॉन समाकलन के रूप में भी जाना जाता है, जिनके लिए अधिकांश सिद्धांत देय हैं। वे प्रायिकता सिद्धांत और प्रसंभाव्य प्रक्रियाओं और प्रायिकता सिद्धांत सहित गणितीय विश्लेषण की कुछ शाखाओं में सामान्य अनुप्रयोग पाते हैं।
परिभाषा
लेब्सग्यू-स्टिल्टजेस समाकलन
को तब परिभाषित किया जाता है जब बोरेल-माप्य फलन और परिबद्ध फलन होता है और [a, b] और दाएं-संतत में सीमित भिन्नता का होता है, या जब f गैर-ऋणात्मक होता है और g एकदिष्ट फलन और सतत फलन होता है। आरंभ करने के लिए, यह मान लें f गैर-ऋणात्मक है और g एकदिष्ट ह्वासमान और सम-संतत है। w((s, t]) = g(t) − g(s) और w({a}) = 0 को परिभाषित करें (वैकल्पिक रूप से, g वाम-संतत, w([s,t)) = g(t) − g(s) और w({b}) = 0) के लिए निर्माण कार्य करता है।
कैराथोडोरी के विस्तार प्रमेय के अनुसार, [a, b] पर एक अद्वितीय बोरेल माप μg है जो प्रत्येक अंतराल I पर w से सहमत है। माप μg एक बाह्य माप (वस्तुतः, एक मीट्रिक बाह्य माप) से उत्पन्न होता है जो
द्वारा दिया जाता है, जो कि E के सभी आवरणों पर अगणनीय अर्ध-विवृत अंतरालों द्वारा लिया जाता है। इस माप को कभी-कभी[1] g से संबद्ध लेबेस्गु-स्टिल्टजेस माप भी कहा जाता है।
लेब्सग्यू-स्टिल्टजेस समाकलन
को सामान्य विधि से माप μg के संबंध में f के लेब्सग्यू समाकलन के रूप में परिभाषित किया गया है। यदि g गैर वर्द्धमान है, तो
को परिभाषित करें, बाद वाला समाकलन पूर्ववर्ती निर्माण द्वारा परिभाषित किया जा रहा है।
यदि g परिबद्ध भिन्नता का है और f परिबद्ध है, तो
लिखना संभव है जहां g1(x) = V x
ag अंतराल [a, x], और g2(x) = g1(x) − g(x) में g की कुल भिन्नता है। दोनों g1 और g2 एकदिष्ट ह्वासमान हैं। अब g के संबंध में लेब्सग्यू-स्टिल्टजेस समाकलन को
द्वारा परिभाषित किया गया है, जहां बाद के दो समाकलन पूर्ववर्ती निर्माण द्वारा ठीक रूप से परिभाषित हैं।
डेनियल समाकलन
एक वैकल्पिक दृष्टिकोण (हेविट & स्ट्रोमबर्ग 1965) लेब्सग्यू-स्टिल्टजेस समाकलन को डेनियल समाकलन के रूप में परिभाषित करना है जो सामान्य रीमैन-स्टिल्टजेस समाकलन का विस्तार करता है। मान लीजिए कि g [a, b] पर एक गैर-ह्रासमान दाएँ-संतत फलन है, और I( f ) को सभी सतत फलन f के लिए रीमैन-स्टिल्टजेस समाकलन
के रूप में परिभाषित करता है। फलनात्मक (गणित) I [a, b] पर रेडॉन माप को परिभाषित करता है। फिर इस प्रकार्यात्मक को
- समूहित करके सभी गैर-नऋणात्मक फलन के वर्ग तक बढ़ाया जा सकता है।
बोरेल माप्य फलनों के लिए, किसी के निकट
है, और तत्समक के दोनों ओर फिर h के लेब्सग्यू-स्टिल्टजेस समाकलन को परिभाषित करता है। बाह्य माप μg को
के माध्यम से परिभाषित किया गया है जहां χA, A का सूचक फलन है।
परिबद्ध भिन्नता के समाकलन को धनात्मक और ऋणात्मक विविधताओं में विघटित करके उपरोक्त विधि से नियंत्रित किया जाता है।
उदाहरण
मान लीजिए कि समतल में γ : [a, b] → R2 एक संशोधनीय वक्र है और ρ : R2 → [0, ∞) बोरेल माप्य है। तब हम ρ द्वारा भारित यूक्लिडियन मापन के संबंध में γ की लंबाई को
के रूप में परिभाषित कर सकते हैं, जहां γ से [a, t] के प्रतिबंध की लंबाई है। इसे कभी-कभी γ की ρ-लंबाई भी कहा जाता है। यह धारणा विभिन्न अनुप्रयोगों के लिए अत्यधिक उपयोगी है: उदाहरण के लिए, कीचड़ भरे क्षेत्र में जिस गति से कोई व्यक्ति चल सकता है वह इस बात पर निर्भर हो सकता है कि कीचड़ कितना गहन है। यदि ρ(z) z पर या उसके निकट चलने की गति के व्युत्क्रम को दर्शाता है, तो γ की ρ-लंबाई वह समय है जो γ को पार करने में लगेगा। चरम लंबाई की अवधारणा वक्रों की ρ-लंबाई की इस धारणा का उपयोग करती है और अनुरूप प्रतिचित्रण के अध्ययन में उपयोगी है।
भागों द्वारा समाकलन
एक फलन f को एक बिंदु a पर "नियमित" कहा जाता है यदि दाएं और बाएं हाथ की सीमाएं f (a+) और f (a−) स्थित है, और फलन a पर औसत मान
- लेता है।
परिमित भिन्नता के दो फलन U और V को देखते हुए, यदि प्रत्येक बिंदु पर या तो U या V में से कम से कम एक सतत है या U और V दोनों नियमित हैं, तो लेब्सग्यू-स्टिल्टजेस समाकलन के लिए भागों के सूत्र द्वारा एक समाकलन होता है:[2]
यहां प्रासंगिक लेबेस्ग-स्टिल्टजेस उपाय U और V फलनों के दाएं-संतत संस्करणों से सम्बद्ध हैं; अर्थात्, और इसी प्रकार । परिबद्ध अंतराल (a, b) को असंबद्ध अंतराल (-∞, b), (a, ∞) या (-∞, ∞) से बदला जा सकता है, यद्यपि इस असंबद्ध अंतराल पर U और V सीमित भिन्नता के हों। जटिल-मानित फलन का भी उपयोग किया जा सकता है।
प्रसंभाव्य गणना के सिद्धांत में महत्वपूर्ण महत्व का वैकल्पिक परिणाम निम्नलिखित है। परिमित भिन्नता के दो फलन U और V दिए गए हैं, जो दाएं-संतत दोनों हैं और जिनकी बाएँ-सीमाएँ हैं (वे कैडलैग फलन हैं) तो
जहां ΔUt = U(t) − U(t−)। इस परिणाम को इटो के लेम्मा के पूर्वगामी के रूप में देखा जा सकता है, और यह प्रसंभाव्य समाकलन के सामान्य सिद्धांत में उपयोग में आता है। अंतिम पद ΔU(t)ΔV(t) = d[U, V] है, जो U और V के द्विघात सहसंयोजन से उत्पन्न होता है। (पहले के परिणाम को स्ट्रैटोनोविच समाकलन से संबंधित परिणाम के रूप में देखा जा सकता है।)
संबंधित अवधारणाएँ
लेब्सग्यू समाकलन
जब सभी वास्तविक x के लिए g(x) = x होता है, तो μg लेब्सेग माप होता है, और g के संबंध मे f का लेब्सेग-स्टिल्टजेस का समाकलन, f के लेबेस्ग समाकलन के समतुल्य होता है।
रीमैन-स्टिल्टजेस समाकलन और प्रायिकता सिद्धांत
जहां f वास्तविक चर का एक सतत फलन वास्तविक-मानित फलन है और v गैर-ह्रासमान वास्तविक फलन है, लेबेस्ग्यू-स्टिल्टजेस समाकलन रीमैन-स्टिल्टजेस समाकलन के बराबर है, इस स्थिति में हम प्रायः लेब्सग्यू-स्टिल्टजेस समाकलन के लिए
लिखते हैं, जिससे माप μv अंतर्निहित रहता है। यह प्रायिकता सिद्धांत में विशेष रूप से सामान्य है जब v वास्तविक-मानित यादृच्छिक चर X का संचयी वितरण फलन है, जिस स्थिति में
- ।
(ऐसी स्थितियों से निपटने के विषय में अधिक सूचना के लिए रीमैन-स्टिल्टजेस समाकलन पर लेख देखें।)
टिप्पणियाँ
- ↑ Halmos (1974), Sec. 15
- ↑ Hewitt, Edwin (May 1960). "स्टिल्टजेस इंटीग्रल्स के लिए भागों द्वारा एकीकरण". The American Mathematical Monthly. 67 (5): 419–423. doi:10.2307/2309287. JSTOR 2309287.
Also see Henstock-kurzweil-stiltjes integral
संदर्भ
- Halmos, Paul R. (1974), Measure Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90088-9
- Hewitt, Edwin; Stromberg, Karl (1965), Real and abstract analysis, Springer-Verlag.
- Saks, Stanisław (1937) Theory of the Integral.
- Shilov, G. E., and Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, trans. Dover Publications. ISBN 0-486-63519-8.