अंतिम मान प्रमेय
गणितीय विश्लेषण में, अंतिम मान प्रमेय (एफवीटी) कई समान प्रमेयों में से एक है जिसका उपयोग आवृत्ति डोमेन अभिव्यक्तियों को समय डोमेन व्यवहार से संबंधित करने के लिए किया जाता है क्योंकि समय अनंत तक पहुंचता है।[1][2][3][4]
गणितीय रूप से, यदि निरंतर समय में (एकतरफा) लाप्लास परिवर्तन होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत
इसी प्रकार यदि असतत समय में (एकतरफा) Z-परिवर्तन होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत
एबेलियन अंतिम मान प्रमेय की गणना करने के लिए (या ) के समय-डोमेन व्यवहार के बारे में धारणा बनाता है।
इसके विपरीत, एक टूबेरियन अंतिम मूल्य प्रमेय (या ) (अभिन्न परिवर्तनों के लिए एबेलियन और टूबेरियन प्रमेय देखें) की गणना करने के लिए के आवृत्ति-डोमेन व्यवहार के बारे में धारणा बनाता है।
लाप्लास परिवर्तन के लिए अंतिम मान प्रमेय
limt → ∞ f(t) को घटाना
निम्नलिखित कथनों में, संकेतन '' का अर्थ है कि 0 की ओर अग्रसर है, जबकि '' का अर्थ है कि धनात्मक संख्याओं के माध्यम से 0 की ओर अग्रसर है।
मानक अंतिम मान प्रमेय
मान लीजिए कि का प्रत्येक ध्रुव या तो खुले बाएँ आधे तल में है या मूल बिंदु पर है, और के मूल बिंदु पर अधिकतम एक ही ध्रुव है। जैसे को , और के रूप में।[5]
व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय
मान लीजिए कि और दोनों में लाप्लास परिवर्तन हैं जो सभी के लिए उपस्थित हैं। यदि उपस्थित है और उपस्थित है तो ।[3]: Theorem 2.36 [4]: 20 [6]
टिप्पणी
प्रमेय को धारण करने के लिए दोनों सीमाएँ उपस्थित होनी चाहिए। उदाहरण के लिए, यदि तब उपस्थित नहीं है, किन्तु
.[3]: Example 2.37 [4]: 20
उन्नत टूबेरियन परिवर्तित अंतिम मान प्रमेय
मान लीजिए कि परिबद्ध और अवकलनीय है, और वह भी पर परिबद्ध है।
यदि जैसा तब .[7]
विस्तारित अंतिम मान प्रमेय
मान लीजिए कि प्रत्येक ध्रुव या तो खुले बाएँ आधे तल में है या मूल में है। तब निम्न में से एक होता है:
- जैसा , और .
- जैसा , और जैसा .
- जैसा , और जैसा .
विशेष रूप से, यदि , का एक बहु ध्रुव है तो स्थिति 2 या 3 ( या ) लागू होती है।[5]
सामान्यीकृत अंतिम मान प्रमेय
लगता है कि लाप्लास परिवर्तनीय है। मान लीजिये . यदि उपस्थित है और तब उपस्थित है
जहाँ गामा फ़ंक्शन को दर्शाता है।[5]
अनुप्रयोग
प्राप्त करने के लिए अंतिम मान प्रमेय का किसी नियंत्रण सिद्धांत की दीर्घकालिक स्थिरता स्थापित करने में अनुप्रयोग होता है।
lims → 0 s F(s) को घटाना
एबेलियन अंतिम मान प्रमेय
मान लीजिए कि परिबद्ध और मापने योग्य है और .
फिर सभी और के लिए उपस्थित है।[7]
प्राथमिक प्रमाण[7]
सुविधा के लिए मान लीजिए कि पर , और को रहने दें।
मान लीजिये , और चुनें सभी के लिए । के बाद से, हमारे पास प्रत्येक के लिए
इस प्रकार
अब प्रत्येक के लिए हमारे पास है
- .
दूसरी ओर, चूंकि निश्चित है इसलिए यह स्पष्ट है कि , इसलिए यदि अत्यंत छोटा है।
व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय
मान लीजिए कि निम्नलिखित सभी शर्तें पूरी हो गई हैं:
- निरंतर भिन्न है और दोनों और एक लाप्लास परिवर्तन है
- बिल्कुल अभिन्न है - अर्थात, परिमित है
- अस्तित्व में है और सीमित है
तब
- .[8]
टिप्पणी
प्रमाण प्रभुत्व अभिसरण प्रमेय का उपयोग करता है।[8]
किसी फ़ंक्शन के माध्य के लिए अंतिम मान प्रमेय
मान लीजिये एक सतत और परिबद्ध फलन इस प्रकार हो कि निम्नलिखित सीमा उपस्थित हो
तब .[9]
आवधिक कार्यों के स्पर्शोन्मुख योग के लिए अंतिम मान प्रमेय
लगता है कि में सतत एवं पूर्णतया एकीकृत है . आगे मान लीजिए आवर्ती कार्यों के एक सीमित योग के बराबर है , वह है
कहाँ में बिल्कुल एकीकृत है और अनंत पर लुप्त हो जाता है। तब
- .[10]
अनंत तक विचलन करने वाले फ़ंक्शन के लिए अंतिम मान प्रमेय
मान लीजिये और का लाप्लास रूपांतरण हो . लगता है कि निम्नलिखित सभी शर्तों को पूरा करता है:
- शून्य पर असीम रूप से भिन्न है
- सभी गैर-नकारात्मक पूर्णांकों के लिए लाप्लास परिवर्तन है # अनंत की ओर विचरण करता है
तब अनंत की ओर विचरण करता है .[11]
अनुचित रूप से पूर्णांकित कार्यों के लिए अंतिम मान प्रमेय (अभिन्न के लिए एबेल का प्रमेय)
मान लीजिये मापने योग्य हो और ऐसा हो कि (संभवतः अनुचित) अभिन्न हो के लिए एकत्रित होता है . तब
यह हाबिल के प्रमेय का एक संस्करण है।
इसे देखने के लिए उस पर ध्यान दें और अंतिम मान प्रमेय को लागू करें भागों द्वारा एकीकरण के बाद: के लिए ,
अंतिम मान प्रमेय के अनुसार, बाईं ओर अभिसरण होता है के लिए .
अनुचित अभिन्न का अभिसरण स्थापित करना व्यवहार में, डिरिचलेट का परीक्षण#अनुचित समाकलन |अनुचित समाकलन के लिए डिरिचलेट का परीक्षण अक्सर सहायक होता है। एक उदाहरण डिरिचलेट इंटीग्रल है।
अनुप्रयोग
प्राप्त करने के लिए अंतिम मान प्रमेय क्षण (गणित) की गणना करने के लिए संभाव्यता और सांख्यिकी में अनुप्रयोग हैं। मान लीजिये एक सतत यादृच्छिक चर का संचयी वितरण फ़ंक्शन बनें और जाने का लाप्लास-स्टिल्टजेस रूपांतरण हो . फिर -वें क्षण का के रूप में गणना की जा सकती है
रणनीति लिखने की है
- कहाँ निरंतर है और
प्रत्येक के लिए , एक समारोह के लिए . प्रत्येक के लिए , रखना के व्युत्क्रम लाप्लास परिवर्तन के रूप में , प्राप्त
, और निष्कर्ष निकालने के लिए अंतिम मान प्रमेय लागू करें . तब
- और इसलिए प्राप्त होना।
उदाहरण
==== उदाहरण जहां एफवीटी ==== रखता है
उदाहरण के लिए, स्थानांतरण प्रकार्य द्वारा वर्णित सिस्टम के लिए
आवेग प्रतिक्रिया परिवर्तित हो जाती है
अर्थात्, एक छोटे आवेग से परेशान होने के बाद सिस्टम शून्य पर लौट आता है। हालाँकि, चरण प्रतिक्रिया का लाप्लास परिवर्तन है
और इस प्रकार चरण प्रतिक्रिया अभिसरित हो जाती है
तो एक शून्य-अवस्था प्रणाली 3 के अंतिम मान तक तेजी से वृद्धि का अनुसरण करेगी।
उदाहरण जहां FVT मान्य नहीं है
स्थानांतरण फ़ंक्शन द्वारा वर्णित सिस्टम के लिए
ऐसा प्रतीत होता है कि अंतिम मान प्रमेय आवेग प्रतिक्रिया का अंतिम मान 0 और चरण प्रतिक्रिया का अंतिम मान 1 होने की भविष्यवाणी करता है। हालाँकि, कोई भी समय-डोमेन सीमा उपस्थित नहीं है, और इसलिए अंतिम मान प्रमेय की भविष्यवाणियाँ मान्य नहीं हैं। वास्तव में, आवेग प्रतिक्रिया और चरण प्रतिक्रिया दोनों दोलन करते हैं, और (इस विशेष मामले में) अंतिम मान प्रमेय उन औसत मूल्यों का वर्णन करता है जिनके आसपास प्रतिक्रियाएं दोलन करती हैं।
नियंत्रण सिद्धांत में दो जाँचें की जाती हैं जो अंतिम मान प्रमेय के लिए वैध परिणामों की पुष्टि करती हैं:
- हर के सभी गैर-शून्य मूल नकारात्मक वास्तविक भाग होने चाहिए।
- मूल स्थान पर एक से अधिक ध्रुव नहीं होने चाहिए।
इस उदाहरण में नियम 1 संतुष्ट नहीं था, इसमें हर की जड़ें हैं और .
Z परिवर्तन के लिए अंतिम मान प्रमेय
कटौती करना limk → ∞ f[k]
अंतिम मान प्रमेय
यदि उपस्थित है और तब उपस्थित है .[4]: 101
रैखिक प्रणालियों का अंतिम मान
सतत-समय एलटीआई सिस्टम
सिस्टम का अंतिम मान
एक चरण इनपुट के जवाब में आयाम के साथ है:
नमूना-डेटा सिस्टम
उपरोक्त निरंतर-समय एलटीआई प्रणाली की नमूना-डेटा प्रणाली, एपेरियोडिक नमूनाकरण समय पर असतत-समय प्रणाली है
कहाँ और
- ,
एक चरण इनपुट के जवाब में इस प्रणाली का अंतिम मान आयाम के साथ यह इसकी मूल सतत-समय प्रणाली के अंतिम मान के समान है। [12]
यह भी देखें
- प्रारंभिक मान प्रमेय
- Z-परिवर्तन
- लाप्लास परिवर्तन
- एबेलियन और टूबेरियन प्रमेय
टिप्पणियाँ
- ↑ Wang, Ruye (2010-02-17). "प्रारंभिक और अंतिम मूल्य प्रमेय". Retrieved 2011-10-21.
- ↑ Alan V. Oppenheim; Alan S. Willsky; S. Hamid Nawab (1997). Signals & Systems. New Jersey, USA: Prentice Hall. ISBN 0-13-814757-4.
- ↑ 3.0 3.1 3.2 Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications. New York: Springer. ISBN 978-1-4757-7262-3.
- ↑ 4.0 4.1 4.2 4.3 Graf, Urs (2004). वैज्ञानिकों और इंजीनियरों के लिए एप्लाइड लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म. Basel: Birkhäuser Verlag. ISBN 3-7643-2427-9.
- ↑ 5.0 5.1 5.2 Chen, Jie; Lundberg, Kent H.; Davison, Daniel E.; Bernstein, Dennis S. (June 2007). "अंतिम मूल्य प्रमेय पर दोबारा गौर किया गया - अनंत सीमाएँ और अपरिमेय कार्य". IEEE Control Systems Magazine. 27 (3): 97–99. doi:10.1109/MCS.2007.365008.
- ↑ "लाप्लास ट्रांसफॉर्म का अंतिम मूल्य प्रमेय". ProofWiki. Retrieved 12 April 2020.
- ↑ 7.0 7.1 7.2 Ullrich, David C. (2018-05-26). "टूबेरियन अंतिम मूल्य प्रमेय". Math Stack Exchange.
- ↑ 8.0 8.1 Sopasakis, Pantelis (2019-05-18). "डोमिनेटेड कन्वर्जेन्स प्रमेय का उपयोग करके अंतिम मूल्य प्रमेय के लिए एक प्रमाण". Math Stack Exchange.
- ↑ Murthy, Kavi Rama (2019-05-07). "लाप्लास ट्रांसफॉर्म के लिए अंतिम मूल्य प्रमेय का वैकल्पिक संस्करण". Math Stack Exchange.
- ↑ Gluskin, Emanuel (1 November 2003). "आइए हम अंतिम-मूल्य प्रमेय के इस सामान्यीकरण को सिखाएं". European Journal of Physics. 24 (6): 591–597. doi:10.1088/0143-0807/24/6/005.
- ↑ Hew, Patrick (2020-04-22). "Final Value Theorem for function that diverges to infinity?". Math Stack Exchange.
- ↑ Mohajeri, Kamran; Madadi, Ali; Tavassoli, Babak (2021). "विलंब और ड्रॉपआउट वाले नेटवर्क पर एपेरियोडिक सैंपलिंग के साथ ट्रैकिंग नियंत्रण". International Journal of Systems Science. 52 (10): 1987–2002. doi:10.1080/00207721.2021.1874074.
बाहरी संबंध
- https://web.archive.org/web/20101225034508/http://wikis.controltheorypro.com/index.php?title=Final_Value_Theorem
- http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/node17.html Archived 2017-12-26 at the Wayback Machine: final value for Laplace
- https://web.archive.org/web/20110719222313/http://www.engr.iupui.edu/~skoskie/ECE595s7/handouts/fvt_proof.pdf: final value proof for Z-transforms