संकुचन क्षेत्र (छवि पुनर्स्थापना)
संकुचन क्षेत्र एक यादृच्छिक क्षेत्र-आधारित मशीन लर्निंग तकनीक है जिसका उद्देश्य कम कम्प्यूटेशनल ओवरहेड का उपयोग करके उच्च गुणवत्ता वाली छवि पुनर्स्थापना (डीनोइजिंग और डीब्लरिंग) करना है।
विधि
पुनर्स्थापित छवि का अनुमान नमूना छवियों के एक सेट पर प्रशिक्षण के बाद एक दूषित अवलोकन से लगाया गया है।
एक संकुचन (मैपिंग) फ़ंक्शन को सीधे रेडियल आधार फ़ंक्शन कर्नेल के रैखिक संयोजन के रूप में तैयार किया गया है, जहां साझा सटीक पैरामीटर है, (समदूरस्थ) कर्नेल स्थिति को दर्शाता है, और M गाऊसी कर्नेल की संख्या है।
क्योंकि संकुचन फ़ंक्शन को सीधे मॉडल किया गया है, अनुकूलन प्रक्रिया प्रति पुनरावृत्ति एकल द्विघात न्यूनतमकरण तक कम हो जाती है, जिसे संकुचन क्षेत्र की भविष्यवाणी के रूप में दर्शाया जाता है जहां असतत फूरियर रूपांतरण को दर्शाता है और 2D है बिंदु प्रसार फ़ंक्शन फ़िल्टर के साथ कनवल्शन एक ऑप्टिकल ट्रांसफर फ़ंक्शन है जिसे के असतत फूरियर रूपांतरण के रूप में परिभाषित किया गया है, और का जटिल संयुग्म है।
को प्रारंभिक केस वॉटरफॉल के साथ प्रत्येक पुनरावृत्ति के लिए के रूप में सीखा जाता है)। हानि-न्यूनीकरण का उपयोग मॉडल पैरामीटर सीखने के लिए किया जाता है।
सीखने के उद्देश्य फ़ंक्शन को के रूप में परिभाषित किया गया है। जहां एक अलग-अलग हानि फ़ंक्शन है जिसे प्रशिक्षण डेटा का उपयोग करके अति लोभ से से कम किया जाता है।
निष्पादन
लेखक द्वारा प्रारंभिक परीक्षणों से पता चलता है कि RTF5[1] की तुलना में थोड़ा बेहतर प्रदर्शन प्राप्त करता है, इसके बाद , , , और BM3D.
BM3D डीनोइज़िंग गति और के बीच आती है, आरटीएफ धीमी गति का क्रम है।
लाभ
- परिणाम BM3D द्वारा प्राप्त परिणामों से तुलनीय हैं (2007 में अपनी स्थापना के बाद से अत्याधुनिक डीनोइज़िंग में संदर्भ)
- अन्य उच्च-प्रदर्शन विधियों की तुलना में न्यूनतम रनटाइम (संभावित रूप से एम्बेडेड डिवाइस के भीतर लागू)
- समानांतरीकरण योग्य (जैसे: संभव जीपीयू कार्यान्वयन)
- पूर्वानुमेयता: रनटाइम जहां पिक्सेल की संख्या है
- सीपीयू के साथ भी तेज़ प्रशिक्षण
कार्यान्वयन
- एक संदर्भ कार्यान्वयन मैटलैब में लिखा गया है और बीएसडी 2-क्लॉज लाइसेंस के अंतर्गत जारी किया गया है: संकुचन-फ़ील्ड
यह भी देखें
- यादृच्छिक क्षेत्र
- असतत फूरियर रूपांतरण
- संवलन
- रव में कमी
- अस्पष्टता
संदर्भ
- ↑ Jancsary, Jeremy; Nowozin, Sebastian; Sharp, Toby; Rother, Carsten (10 April 2012). Regression Tree Fields – An Efficient, Non-parametric Approach to Image Labeling Problems. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA: IEEE Computer Society. doi:10.1109/CVPR.2012.6247950.
- Schmidt, Uwe; Roth, Stefan (2014). Shrinkage Fields for Effective Image Restoration (PDF). Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. Columbus, OH, USA: IEEE. doi:10.1109/CVPR.2014.349. ISBN 978-1-4799-5118-5.