प्रक्षेपीय रेखा

From Vigyanwiki
Revision as of 20:42, 25 November 2022 by alpha>Indicwiki (Created page with "{{Refimprove|date=December 2009}} गणित में, एक प्रक्षेपी रेखा, मोटे तौर पर बोलती है, एक सा...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक प्रक्षेपी रेखा, मोटे तौर पर बोलती है, एक सामान्य रेखा (ज्यामिति) का विस्तार एक बिंदु से होता है जिसे 'बिंदु पर अनंत' कहा जाता है। विशेष मामलों के परिणामी विलोपन द्वारा ज्यामिति के कई प्रमेयों के कथन और प्रमाण को सरल किया जाता है; उदाहरण के लिए, एक प्रक्षेपी तल में दो अलग-अलग प्रक्षेपी रेखाएँ ठीक एक बिंदु पर मिलती हैं (कोई समानांतर मामला नहीं है)।

प्रक्षेपी रेखा को औपचारिक रूप से परिभाषित करने के कई समान तरीके हैं; सबसे आम में से एक एक क्षेत्र (गणित) के पर एक प्रक्षेपी रेखा को परिभाषित करना है, जिसे आमतौर पर पी कहा जाता है1(K), द्वि-आयामी K-वेक्टर अंतरिक्ष के एक-आयामी रैखिक उप-समूह के सेट के रूप में। यह परिभाषा प्रक्षेपी स्थान की सामान्य परिभाषा का एक विशेष उदाहरण है।

वास्तविक संख्या पर अनुमानित रेखा कई गुना है; विवरण के लिए वास्तविक प्रक्षेपी रेखा देखें।

सजातीय निर्देशांक

प्रोजेक्टिव लाइन पी में एक मनमाना बिंदु1(K) समरूप निर्देशांकों के समतुल्य वर्ग द्वारा प्रदर्शित किया जा सकता है, जो एक जोड़ी का रूप लेते हैं

K के तत्वों की संख्या जो दोनों शून्य नहीं हैं। ऐसे दो जोड़े तुल्यता संबंध हैं यदि वे एक समग्र अशून्य कारक λ से भिन्न होते हैं:


अनंत पर एक बिंदु द्वारा विस्तारित रेखा

प्रोजेक्टिव लाइन को अनंत पर एक बिंदु द्वारा विस्तारित लाइन K से पहचाना जा सकता है। ज्यादा ठीक, रेखा K को 'P' के उपसमुच्चय से पहचाना जा सकता है1(K) द्वारा दिया गया

यह उपसमुच्चय P के सभी बिंदुओं को शामिल करता है1(K) एक को छोड़कर, जिसे अनंत पर बिंदु कहा जाता है:

यह अंकगणित को K से 'P' तक विस्तारित करने की अनुमति देता है1(के) सूत्रों द्वारा

सजातीय निर्देशांक के संदर्भ में इस अंकगणित का अनुवाद करने पर, कब मिलता है [0 : 0] नही होता है:


उदाहरण

वास्तविक प्रक्षेपी रेखा

वास्तविक संख्याओं पर प्रक्षेपी रेखा को वास्तविक प्रक्षेपी रेखा कहा जाता है। इसे एक आदर्श बिंदु पर अनंत ∞ के साथ मिलकर K रेखा के रूप में भी सोचा जा सकता है; बिंदु K के दोनों सिरों से जुड़कर एक बंद लूप या टोपोलॉजिकल सर्कल बनाता है।

आर में बिंदुओं को प्रोजेक्ट करके एक उदाहरण प्राप्त किया जाता है2 यूनिट सर्कल पर और फिर कोटिएंट स्पेस (टोपोलॉजी) बिल्कुल विपरीत बिंदु। समूह सिद्धांत के संदर्भ में हम उपसमूह द्वारा भागफल ले सकते हैं {1, −1}. विस्तारित वास्तविक संख्या रेखा की तुलना करें, जो ∞ और −∞ को अलग करती है।

जटिल प्रक्षेपी रेखा: रीमैन क्षेत्र

जटिल समतल में अनंत पर एक बिंदु जोड़ने से एक ऐसा स्थान बनता है जो स्थैतिक रूप से एक गोला है। इसलिए जटिल प्रक्षेपी रेखा को रीमैन क्षेत्र (या कभी-कभी गॉस क्षेत्र) के रूप में भी जाना जाता है। कॉम्पैक्ट रीमैन सतह का सबसे सरल उदाहरण के रूप में, यह जटिल विश्लेषण, बीजगणितीय ज्यामिति और जटिल कई गुना सिद्धांत में निरंतर उपयोग में है।

एक परिमित क्षेत्र के लिए

परिमित क्षेत्र F पर प्रक्षेपी रेखाq क्यू तत्वों की है q + 1 अंक। अन्य सभी मामलों में यह अन्य प्रकार के क्षेत्रों पर परिभाषित प्रक्षेपी रेखाओं से अलग नहीं है। सजातीय निर्देशांक के संदर्भ में [x : y], इन बिंदुओं में से क्यू का रूप है:

[a : 1] प्रत्येक के लिए a में Fq,

और अनंत पर शेष बिंदु को [1 : 0] के रूप में दर्शाया जा सकता है।

समरूपता समूह

आमतौर पर, K में गुणांक वाले होमोग्राफी का समूह प्रक्षेपी रेखा 'P' पर कार्य करता है।1(के)। यह ग्रुप एक्शन (मैथमैटिक्स) ग्रुप एक्शन (मैथमैटिक्स) #Types_of_actions है, ताकि 'P'1(K) समूह के लिए एक समरूप स्थान है, जिसे अक्सर PGL लिखा जाता है2(के) इन परिवर्तनों की प्रोजेक्टिव प्रकृति पर जोर देने के लिए। ट्रांज़िटिविटी कहती है कि एक होमोग्राफी मौजूद है जो किसी भी बिंदु Q को किसी अन्य बिंदु R में बदल देगी। बिंदु 'P' पर अनंत है।1(K) इसलिए निर्देशांक की पसंद का एक आर्टिफैक्ट है: सजातीय निर्देशांक

एक गैर-शून्य बिंदु द्वारा एक आयामी उपसमष्टि व्यक्त करें (X, Y) इसमें पड़ा हुआ है, लेकिन प्रक्षेप्य रेखा की समरूपता बिंदु को स्थानांतरित कर सकती है ∞ = [1 : 0] किसी अन्य के लिए, और यह किसी भी तरह से अलग नहीं है।

और भी बहुत कुछ सत्य है, जिसमें कुछ परिवर्तन किसी दिए गए विशिष्ट (गणित) बिंदु Q को ले सकते हैंiके लिये i = 1, 2, 3 किसी अन्य 3-टपल आर के लिएiअलग-अलग बिंदुओं की (ट्रिपल ट्रांज़िटिविटी)। विशिष्टता की यह मात्रा पीजीएल के तीन आयामों का 'उपयोग' करती है2(क); दूसरे शब्दों में, समूह क्रिया समूह क्रिया (गणित)|तीव्र रूप से 3-सकर्मक है। इसका कम्प्यूटेशनल पहलू क्रॉस-अनुपात है। वास्तव में, एक सामान्यीकृत आक्षेप सत्य है: एक तीव्र 3-संक्रमणीय समूह क्रिया हमेशा एक PGL के सामान्यीकृत रूप (आइसोमोर्फिक) होती है।2(के) प्रोजेक्टिव लाइन पर कार्रवाई, केटी-फील्ड द्वारा फील्ड की जगह (कमजोर प्रकार के इनवॉल्यूशन के व्युत्क्रम को सामान्य करना), और प्रोजेक्टिव लीनियर मैप्स के संगत सामान्यीकरण द्वारा पीजीएल।[1]


बीजगणितीय वक्र के रूप में

प्रक्षेपी रेखा एक बीजगणितीय वक्र का एक मूलभूत उदाहरण है। बीजगणितीय ज्यामिति के दृष्टिकोण से, पी1(K) जीनस (गणित) 0 का एक गैर-एकवचन वक्र है। यदि K बीजगणितीय रूप से बंद है, तो यह K पर अद्वितीय ऐसा वक्र है, जो तर्कसंगत तुल्यता तक है। सामान्य तौर पर जीनस 0 का एक (गैर-एकवचन) वक्र तर्कसंगत रूप से K से एक शांकव C के समतुल्य होता है, जो स्वयं द्विभाजित रूप से प्रक्षेपी रेखा के समतुल्य होता है यदि और केवल यदि C में K पर परिभाषित बिंदु हो; ज्यामितीय रूप से इस तरह के एक बिंदु पी को मूल के रूप में उपयोग किया जा सकता है ताकि स्पष्ट द्विवार्षिक समानता हो सके।

प्रक्षेपी रेखा की एक बीजगणितीय विविधता का कार्य क्षेत्र, K पर तर्कसंगत कार्यों का क्षेत्र K(T) है, एक अनिश्चित T में। K(T) के क्षेत्र automorphisms K(T) के ऊपर ठीक समूह PGL हैं2(के) ऊपर चर्चा की।

किसी एकल बिंदु के अलावा बीजगणितीय किस्म V ओवर K के किसी भी फ़ंक्शन फ़ील्ड K(V) में K(T) के साथ एक सबफ़ील्ड आइसोमॉर्फिक है। द्विभाजित ज्यामिति के दृष्टिकोण से, इसका अर्थ है कि V से 'P' तक एक परिमेय मानचित्र होगा।1(के), जो स्थिर नहीं है। छवि 'P' के केवल बहुत से बिंदुओं को छोड़ देगी1(K), और एक विशिष्ट बिंदु P की प्रतिलोम छवि आयाम की होगी dim V − 1. यह बीजगणितीय ज्यामिति में विधियों की शुरुआत है जो आयाम पर आगमनात्मक हैं। तर्कसंगत मानचित्र जटिल विश्लेषण के मेरोमॉर्फिक फ़ंक्शन के अनुरूप भूमिका निभाते हैं, और वास्तव में कॉम्पैक्ट रीमैन सतहों के मामले में दो अवधारणाएं मेल खाती हैं।

यदि V को अब आयाम 1 के रूप में लिया जाता है, तो हमें एक विशिष्ट बीजगणितीय वक्र C की एक तस्वीर मिलती है, जिसे 'P' के ऊपर प्रस्तुत किया जाता है।1(के)। सी को गैर-एकवचन मानते हुए (जो के (सी) से शुरू होने वाली सामान्यता का कोई नुकसान नहीं है), यह दिखाया जा सकता है कि सी से 'पी' तक ऐसा एक तर्कसंगत नक्शा1(K) वास्तव में हर जगह परिभाषित होगा। (यदि विलक्षणताएं हैं तो ऐसा नहीं है, उदाहरण के लिए एक दोहरा बिंदु जहां एक वक्र खुद को पार करता है, एक तर्कसंगत मानचित्र के बाद एक अनिश्चित परिणाम दे सकता है।) यह एक तस्वीर देता है जिसमें मुख्य ज्यामितीय विशेषता रैमिफिकेशन (गणित) है।

कई वक्र, उदाहरण के लिए हाइपरेलिप्टिक वक्र, प्रक्षेपी रेखा के शाखायुक्त आवरण के रूप में, अमूर्त रूप से प्रस्तुत किए जा सकते हैं। रीमैन-हर्वित्ज़ सूत्र के अनुसार, तब जीनस केवल शाखा के प्रकार पर निर्भर करता है।

एक 'तर्कसंगत वक्र' एक वक्र है जो एक प्रक्षेपी रेखा के लिए द्विभाजित तुल्यता है (तर्कसंगत विविधता देखें); इसका जीनस (गणित) 0 है। प्रोजेक्टिव स्पेस पी में एक तर्कसंगत सामान्य वक्रn एक परिमेय वक्र है जो किसी उचित रेखीय उपसमष्टि में स्थित नहीं है; यह ज्ञात है कि केवल एक उदाहरण है (प्रक्षेपी तुल्यता तक),[2] सजातीय निर्देशांक में पैरामीट्रिक रूप से दिया गया

[1 : टी : टी2 : ... : टीएन]।

पहले दिलचस्प मामले के लिए मुड़ घन देखें।

यह भी देखें


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • प्रक्षेपी विमान
  • प्रक्षेपण स्थान
  • रैखिक उपस्थान
  • सदिश स्थल
  • विविध
  • वास्तविक प्रक्षेपण रेखा
  • सजातीय निर्देशांक
  • तुल्यता वर्ग
  • अनंत पर बिंदु
  • भागफल स्थान (टोपोलॉजी)
  • जटिल विमान
  • वृत्त
  • गुणक
  • समूह क्रिया (गणित)
  • सजातीय स्थान
  • अलग (गणित)
  • पार अनुपात
  • गैर विलक्षण
  • शंकुधर
  • तर्कसंगत समानता
  • फील्ड ऑटोमोर्फिज्म
  • तर्कसंगत नक्शा
  • रमीकरण (गणित)
  • तर्कसंगत किस्म
  • द्विपदीय समानता

संदर्भ

  1. Action of PGL(2) on Projective Space – see comment and cited paper.
  2. Harris, Joe (1992), Algebraic Geometry: A First Course, Graduate Texts in Mathematics, vol. 133, Springer, ISBN 9780387977164.