मूविंग फ्रेम

From Vigyanwiki
Revision as of 17:29, 25 November 2022 by alpha>Indicwiki (Created page with "{{Short description|Generalization of an ordered basis of a vector space}} File:Frenet-Serret moving frame1.png|thumb|right|वक्र पर फ्रेनेट-से...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
वक्र पर फ्रेनेट-सेरेट फ्रेम गतिमान फ्रेम का सबसे सरल उदाहरण है।

गणित में, एक गतिमान फ्रेम एक सदिश स्थान के क्रमबद्ध आधार की धारणा का एक लचीला सामान्यीकरण है जो अक्सर एक सजातीय अंतरिक्ष में एम्बेडेड चिकनी मैनिफोल्ड्स के अंतर ज्यामिति का अध्ययन करने के लिए उपयोग किया जाता है।

परिचय

सामान्य शब्दों में, संदर्भ का एक फ्रेम कार्टेशियन समन्वय प्रणाली प्रदान करके आस-पास की जगह को मापने के लिए अवलोकन द्वारा उपयोग की जाने वाली छड़ को मापने की एक प्रणाली है। एक 'चलता हुआ फ्रेम' तब संदर्भ का एक फ्रेम होता है जो प्रेक्षक के साथ एक प्रक्षेपवक्र (एक वक्र) के साथ चलता है। मूविंग फ्रेम की विधि, इस सरल उदाहरण में, प्रेक्षक के गतिकी गुणों से एक पसंदीदा मूविंग फ्रेम का निर्माण करना चाहती है। एक ज्यामितीय सेटिंग में, इस समस्या को 19वीं शताब्दी के मध्य में जीन फ्रेडेरिक फ्रेनेट और जोसेफ अल्फ्रेड सेरेट द्वारा हल किया गया था।[1] फ़्रेनेट-सेरेट सूत्र | फ़्रेनेट-सेरेट फ़्रेम एक वक्र पर परिभाषित एक गतिशील फ़्रेम है जिसे पूरी तरह से वक्र के वेग और त्वरण से निर्मित किया जा सकता है।[2] फ़्रेनेट-सेरेट फ्रेम घटता के अंतर ज्यामिति में एक महत्वपूर्ण भूमिका निभाता है, अंततः यूक्लिडियन अंतरिक्ष में समरूपता (ज्यामिति) तक चिकनी घटता के अधिक या कम पूर्ण वर्गीकरण के लिए अग्रणी होता है।[3] फ़्रेनेट-सेरेट फ़ार्मुलों से पता चलता है कि वक्र पर परिभाषित कार्यों की एक जोड़ी है, एक वक्र और वक्रता का मरोड़, जो यौगिक फ्रेम द्वारा प्राप्त किया जाता है, और जो पूरी तरह से वर्णन करता है कि फ्रेम वक्र के साथ समय में कैसे विकसित होता है। सामान्य विधि की एक प्रमुख विशेषता यह है कि एक पसंदीदा चलती फ्रेम, बशर्ते इसे पाया जा सके, वक्र का पूर्ण गतिज विवरण देता है।

Darboux Trihedron, एक बिंदु P से मिलकर बनता है, और ओर्थोगोनालिटी इकाई वेक्टर 'e' का एक तिगुना1, तथा2, और ई3 जो एक सतह के लिए इस अर्थ में अनुकूलित है कि पी सतह पर स्थित है, और 'ई'3 सतह के लंबवत है।

19वीं शताब्दी के अंत में, गैस्टन डार्बौक्स ने एक वक्र के बजाय यूक्लिडियन अंतरिक्ष में एक सतह (गणित) पर एक पसंदीदा चलती फ्रेम के निर्माण की समस्या का अध्ययन किया, डार्बौक्स फ्रेम (या ट्राइएड्रे मोबाइल जिसे तब कहा जाता था)। इस तरह के एक फ्रेम का निर्माण करना सामान्य रूप से असंभव हो गया, और यह कि विभेदक प्रणालियों के लिए एकीकरण की शर्तें थीं जिन्हें पहले संतुष्ट करने की आवश्यकता थी।[1]

बाद में, अधिक सामान्य सजातीय स्थानों (जैसे प्रक्षेपी स्थान) के सबमनीफोल्ड के अध्ययन में एली कार्टन और अन्य द्वारा बड़े पैमाने पर चलती फ्रेम विकसित किए गए थे। इस सेटिंग में, एक फ्रेम एक सदिश स्थान के आधार के ज्यामितीय विचार को अन्य प्रकार के ज्यामितीय रिक्त स्थान (क्लेन ज्यामिति) पर ले जाता है। फ्रेम के कुछ उदाहरण हैं:[3]

इनमें से प्रत्येक उदाहरण में, सभी फ़्रेमों का संग्रह एक निश्चित अर्थ में सजातीय स्थान है। रैखिक फ्रेम के मामले में, उदाहरण के लिए, किसी भी दो फ्रेम सामान्य रैखिक समूह के एक तत्व से संबंधित होते हैं। प्रोजेक्टिव फ्रेम प्रक्षेपी रैखिक समूह से संबंधित हैं। फ्रेम के वर्ग की यह एकरूपता, या समरूपता रैखिक, एफ़िन, यूक्लिडियन, या प्रोजेक्टिव लैंडस्केप की ज्यामितीय विशेषताओं को पकड़ती है। इन परिस्थितियों में एक चलती हुई फ्रेम बस यही है: एक फ्रेम जो बिंदु से बिंदु तक भिन्न होता है।

औपचारिक रूप से, एक सजातीय स्थान G/H पर एक फ्रेम में टॉटोलॉजिकल बंडल G → G/H में एक बिंदु होता है। एक 'मूविंग फ्रेम' इस बंडल का एक भाग है। यह इस अर्थ में चल रहा है कि जैसे-जैसे आधार का बिंदु बदलता है, फाइबर में फ्रेम समरूपता समूह G के एक तत्व द्वारा बदल जाता है। एम। आंतरिक रूप से टॉटोलॉजिकल बंडल[5] एक गतिमान फ्रेम को एक प्रमुख बंडल P पर कई गुना परिभाषित किया जा सकता है। इस मामले में, जी-इक्विवेरिएंट मैपिंग φ : P → G द्वारा एक मूविंग फ्रेम दिया जाता है, इस प्रकार लाइ ग्रुप जी के तत्वों द्वारा कई गुना तैयार किया जाता है।

फ़्रेम की धारणा को एक और सामान्य मामले में विस्तारित किया जा सकता है: एक सोल्डर एक फाइबर बंडल को एक चिकनी कई गुना बना सकता है, इस तरह से कि फाइबर व्यवहार करते हैं जैसे कि वे स्पर्शरेखा थे। जब फाइबर बंडल एक समरूप स्थान होता है, तो यह ऊपर वर्णित फ्रेम-फ़ील्ड में कम हो जाता है। जब समरूप स्थान विशेष ऑर्थोगोनल समूहों का भागफल होता है, तो यह एक वीरबीन की मानक अवधारणा को कम कर देता है।

यद्यपि बाहरी और आंतरिक गतिमान फ़्रेमों के बीच एक पर्याप्त औपचारिक अंतर है, वे दोनों इस मायने में समान हैं कि एक गतिशील फ़्रेम हमेशा G में मैपिंग द्वारा दिया जाता है। समतुल्यता विधि, कई गुना पर एक प्राकृतिक चलती फ्रेम को खोजने के लिए है और फिर इसके डार्बौक्स व्युत्पन्न को लेना है, दूसरे शब्दों में पुलबैक (डिफरेंशियल ज्योमेट्री) G से M (या P) का मौरर-कार्टन फॉर्म है, और इस तरह का एक पूरा सेट प्राप्त करता है कई गुना के लिए संरचनात्मक आक्रमणकारियों।[3]


मूविंग फ्रेम की विधि

Cartan (1937) मूविंग फ्रेम की सामान्य परिभाषा और मूविंग फ्रेम की विधि तैयार की, जैसा कि द्वारा विस्तृत किया गया है Weyl (1938). सिद्धांत के तत्व हैं

  • एक झूठ समूह जी।
  • एक क्लेन स्पेस एक्स जिसका ज्यामितीय ऑटोमोर्फिज्म का समूह जी है।
  • एक चिकनी कई गुना Σ जो एक्स के लिए (सामान्यीकृत) निर्देशांक के स्थान के रूप में कार्य करता है।
  • फ्रेम का एक संग्रह ƒ जिनमें से प्रत्येक एक्स से Σ तक एक समन्वय समारोह निर्धारित करता है (फ्रेम की सटीक प्रकृति सामान्य स्वयंसिद्धता में अस्पष्ट छोड़ दी जाती है)।

निम्नलिखित तत्वों को इन तत्वों के बीच धारण करने के लिए माना जाता है:

  • फ्रेम के संग्रह पर जी की एक स्वतंत्र और संक्रमणीय समूह क्रिया (गणित) है: यह जी के लिए एक प्रमुख सजातीय स्थान है। विशेष रूप से, किसी भी जोड़ी के फ्रेम ƒ और ƒ' के लिए, फ्रेम का एक अनूठा संक्रमण होता है ( ƒ→ƒ') G में आवश्यकता (ƒ→ƒ')ƒ = ƒ' द्वारा निर्धारित किया गया है।
  • एक फ्रेम ƒ और एक बिंदु A ∈ X दिया गया है, वहां Σ से संबंधित एक बिंदु x= (A,ƒ) जुड़ा हुआ है। फ़्रेम ƒ द्वारा निर्धारित यह मानचित्रण X के बिंदुओं से Σ के बिंदुओं का एक आक्षेप है। यह आक्षेप फ्रेम की संरचना के कानून के साथ इस अर्थ में संगत है कि एक अलग फ्रेम में बिंदु ए के समन्वय x' ƒ' परिवर्तन (ƒ→ƒ') के आवेदन से (ए, ƒ) से उत्पन्न होता है। वह है,

विधि के हित में एक्स के पैरामिट्रीकृत सबमनिफोल्ड हैं। विचार काफी हद तक स्थानीय हैं, इसलिए पैरामीटर डोमेन को 'आर' का एक खुला उपसमुच्चय माना जाता है।λ</सुपा>. थोड़ी अलग तकनीकें इस पर निर्भर करती हैं कि क्या कोई सबमेनिफोल्ड में इसके पैरामीटराइजेशन के साथ रुचि रखता है, या सबमैनिफोल्ड रीपैरामीटराइजेशन तक।

चलती स्पर्शरेखा फ्रेम

मूविंग फ्रेम का सबसे आम मामला मैनिफोल्ड के स्पर्शरेखा फ्रेम (जिसे फ्रेम बंडल भी कहा जाता है) के बंडल के लिए है। इस मामले में, कई गुना एम पर चलने वाले स्पर्शरेखा फ्रेम में वेक्टर फ़ील्ड ई का संग्रह होता है1, तथा2, …, तथाn एक खुले सेट के प्रत्येक बिंदु पर स्पर्शरेखा स्थान का आधार बनाना UM.

यदि यू पर एक समन्वय प्रणाली है, तो प्रत्येक सदिश क्षेत्र ईjनिर्देशांक वेक्टर क्षेत्रों के एक रैखिक संयोजन के रूप में व्यक्त किया जा सकता है :

जहां प्रत्येक यू पर एक फ़ंक्शन है। इन्हें मैट्रिक्स के घटकों के रूप में देखा जा सकता है . यह मैट्रिक्स दोहरे कोफ़्रेम की समन्वय अभिव्यक्ति को खोजने के लिए उपयोगी है, जैसा कि अगले भाग में बताया गया है।

कोफ़्रेम

एक मूविंग फ्रेम U के ऊपर स्पर्शरेखा बंडल के दोहरे फ्रेम या coframe को निर्धारित करता है, जिसे कभी-कभी मूविंग फ्रेम भी कहा जाता है। यह एक n-चिकनी 1-रूपों का टपल है

θ1, i2, ..., मैंएन

जो यू में प्रत्येक बिंदु क्यू पर रैखिक रूप से स्वतंत्र हैं। इसके विपरीत, इस तरह के कोफ्रेम दिए जाने पर, एक अद्वितीय चलती फ्रेम ई है1, तथा2, …, तथाn जो इसके लिए द्वैत है, अर्थात द्वैत संबंध θ को संतुष्ट करता हैमैं(औरj) = डीमैंj, जहां δमैंj U पर क्रोनकर डेल्टा फलन है।

यदि यू पर एक समन्वय प्रणाली है, जैसा कि पिछले अनुभाग में है, फिर प्रत्येक कोवेक्टर फ़ील्ड θi को कोऑर्डिनेट कोवेक्टर फील्ड्स के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है :

जहां प्रत्येक यू पर एक समारोह है। चूंकि , ऊपर दिए गए दो निर्देशांक व्यंजक उपज के लिए संयोजित होते हैं ; मैट्रिसेस के संदर्भ में, यह बस यही कहता है तथा मैट्रिक्स एक दूसरे के व्युत्क्रम हैं।

शास्त्रीय यांत्रिकी की सेटिंग में, कैनोनिकल निर्देशांक के साथ काम करते समय, कैनोनिकल कॉफ़्रेम को टॉटोलॉजिकल वन-फॉर्म द्वारा दिया जाता है। सहज रूप से, यह एक यांत्रिक प्रणाली के वेग से संबंधित है (निर्देशांक के स्पर्शरेखा बंडल पर वेक्टर फ़ील्ड्स द्वारा दिए गए) सिस्टम के संबंधित संवेगों के लिए (कॉटेन्जेंट बंडल में वेक्टर फ़ील्ड्स द्वारा दिए गए; यानी रूपों द्वारा दिए गए)। टॉटोलॉजिकल वन-फॉर्म अधिक सामान्य सोल्डर फॉर्म का एक विशेष मामला है, जो सामान्य फाइबर बंडल पर (सह-) फ्रेम फ़ील्ड प्रदान करता है।

उपयोग

मूविंग फ्रेम सामान्य सापेक्षता में महत्वपूर्ण हैं, जहां किसी घटना पी (अंतरिक्ष समय में एक बिंदु, जो कि आयाम चार का कई गुना है) में फ्रेम के विकल्प को पास के बिंदुओं तक विस्तारित करने का कोई विशेषाधिकार प्राप्त तरीका नहीं है, और इसलिए एक विकल्प बनाया जाना चाहिए। विशेष आपेक्षिकता के विपरीत, M को सदिश समष्टि V (चौथे आयाम का) माना जाता है। उस मामले में एक बिंदु पी पर एक फ्रेम को पी से किसी अन्य बिंदु क्यू में एक अच्छी तरह से परिभाषित तरीके से अनुवादित किया जा सकता है। मोटे तौर पर बोलते हुए, एक गतिमान फ्रेम एक पर्यवेक्षक से मेल खाता है, और विशेष सापेक्षता में विशिष्ट फ्रेम संदर्भ के जड़त्वीय फ्रेम का प्रतिनिधित्व करते हैं।

सापेक्षता में और रिमेंनियन ज्यामिति में, सबसे उपयोगी प्रकार के गतिमान फ्रेम 'ऑर्थोगोनल' और 'ऑर्थोनॉर्मल फ्रेम' हैं, यानी प्रत्येक बिंदु पर ऑर्थोगोनल (यूनिट) वैक्टर वाले फ्रेम। किसी दिए गए बिंदु पर एक सामान्य फ्रेम को ऑर्थोनॉर्मलाइजेशन द्वारा ऑर्थोनॉर्मल बनाया जा सकता है; वास्तव में यह सुचारू रूप से किया जा सकता है, जिससे कि एक गतिमान फ्रेम के अस्तित्व का तात्पर्य एक गतिमान ऑर्थोनॉर्मल फ्रेम के अस्तित्व से है।

अधिक जानकारी

एक मूविंग फ्रेम हमेशा स्थानीय रूप से मौजूद होता है, यानी, एम में किसी भी बिंदु पी के कुछ पड़ोस यू में; हालाँकि, M पर विश्व स्तर पर एक गतिमान फ्रेम के अस्तित्व के लिए सामयिक स्थितियों की आवश्यकता होती है। उदाहरण के लिए जब M एक वृत्त होता है, या अधिक सामान्यतः एक टोरस्र्स होता है, तो ऐसे फ्रेम मौजूद होते हैं; लेकिन तब नहीं जब M एक 2-गोलाकार हो। एक मैनिफोल्ड जिसमें ग्लोबल मूविंग फ्रेम होता है, समानांतर कहा जाता है। उदाहरण के लिए ध्यान दें कि कैसे पृथ्वी की सतह पर अक्षांश और देशांतर की इकाई दिशाएँ उत्तरी और दक्षिणी ध्रुवों पर एक गतिमान फ्रेम के रूप में टूट जाती हैं।

एली कार्टन की 'मूविंग फ्रेम की विधि' एक मूविंग फ्रेम लेने पर आधारित है जिसे अध्ययन की जा रही विशेष समस्या के अनुकूल बनाया गया है। उदाहरण के लिए, अंतरिक्ष में एक वक्र दिया गया है, वक्र के पहले तीन व्युत्पन्न वैक्टर सामान्य रूप से इसके एक बिंदु पर एक फ्रेम को परिभाषित कर सकते हैं (cf. मात्रात्मक विवरण के लिए मरोड़ टेंसर - यह माना जाता है कि मरोड़ शून्य नहीं है)। वास्तव में, फ्रेम को हिलाने की विधि में, एक और अक्सर फ्रेम के बजाय कोफ्रेम के साथ काम करता है। आम तौर पर, मूविंग फ्रेम को खुले सेट यू पर प्रमुख बंडलों के वर्गों के रूप में देखा जा सकता है। सामान्य कार्टन विधि कार्टन कनेक्शन की धारणा का उपयोग करके इस अमूर्तता का फायदा उठाती है।

एटलस

कई मामलों में, वैश्विक स्तर पर मान्य संदर्भ के एक फ्रेम को परिभाषित करना असंभव है। इस पर काबू पाने के लिए, एटलस (टोपोलॉजी) बनाने के लिए फ़्रेमों को आम तौर पर एक साथ जोड़ा जाता है, इस प्रकार एक स्थानीय फ्रेम की धारणा पर पहुंचते हैं। इसके अलावा, इन एटलसों को एक चिकनी संरचना के साथ संपन्न करना अक्सर वांछनीय होता है, ताकि परिणामी फ्रेम फ़ील्ड अलग-अलग हों।

सामान्यीकरण

यद्यपि यह लेख कई गुना के स्पर्शरेखा बंडल पर एक समन्वय प्रणाली के रूप में फ्रेम फ़ील्ड्स का निर्माण करता है, सामान्य विचार एक वेक्टर बंडल की अवधारणा पर आसानी से आगे बढ़ते हैं, जो कि प्रत्येक बिंदु पर एक सदिश स्थान के साथ कई गुना संपन्न होता है, जो सदिश स्थान होता है मनमाना, और सामान्य रूप से स्पर्शरेखा बंडल से संबंधित नहीं है।

अनुप्रयोग

अंतरिक्ष में घूर्णन के प्रमुख अक्ष

पायलट द्वारा वर्णित किए जाने पर एरोबेटिक युद्धाभ्यास को मूविंग फ्रेम (विमान प्रमुख कुल्हाड़ियों) के संदर्भ में व्यक्त किया जा सकता है।

यह भी देखें

  • डारबॉक्स फ्रेम
  • फ्रेनेट-सीरेट सूत्र
  • यव, पिच, और रोल

टिप्पणियाँ

  1. 1.0 1.1 Chern 1985
  2. D. J. Struik, Lectures on classical differential geometry, p. 18
  3. 3.0 3.1 3.2 Griffiths 1974
  4. "Affine frame" Proofwiki.org
  5. See Cartan (1983) 9.I; Appendix 2 (by Hermann) for the bundle of tangent frames. Fels and Olver (1998) for the case of more general fibrations. Griffiths (1974) for the case of frames on the tautological principal bundle of a homogeneous space.


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • चिकना कई गुना
  • सजातीय स्थान
  • सदिश स्थल
  • आदेशित आधार
  • कार्तीय समन्वय प्रणाली
  • आदर्श सिद्धान्त
  • छड़ नापना
  • प्रक्षेपवक्र
  • सर्वांगसमता (ज्यामिति)
  • वक्रों की विभेदक ज्यामिति
  • एक वक्र का मरोड़
  • अंतर प्रणालियों के लिए अभिन्नता की स्थिति
  • सजातीय रिक्त स्थान
  • प्रक्षेपण स्थान
  • ऑर्थोनॉर्मल बेसिस
  • रैखिक फ्रेम
  • पुलबैक बंडल
  • पुलबैक (अंतर ज्यामिति)
  • सोल्डर फॉर्म
  • विहित निर्देशांक
  • मैट्रिक्स उलटा
  • रिमानियन ज्यामिति
  • में चलाने योग्य
  • देशान्तर
  • घेरा
  • संस्थानिक
  • विविध
  • एरोबेटिक पैंतरेबाज़ी

संदर्भ