ब्रांचिंग प्रक्रिया

From Vigyanwiki
Revision as of 14:47, 4 January 2023 by alpha>Deepali

प्रायिकता सिद्धांत में, ब्रांचिंग प्रक्रिया, गणितीय वस्तु का प्रकार है जिसे स्टोकैस्टिक प्रक्रिया के रूप में जाना जाता है, जिसमें यादृच्छिक चर के संग्रह होते हैं। स्टोकैस्टिक प्रक्रिया के यादृच्छिक चर प्राकृतिक संख्याओं द्वारा अनुक्रमित होते हैं। ब्रांचिंग प्रक्रियाओं का मूल उद्देश्य जनसंख्या के गणितीय मॉडल के रूप में काम करना था जिसमें पीढ़ी में प्रत्येक व्यक्ति पीढ़ी में व्यक्तियों की कुछ यादृच्छिक संख्या उत्पन्न करता है , के अनुसार सबसे सरल मामला, निश्चित संभाव्यता वितरण के लिए जो एक व्यक्ति से दूसरे व्यक्ति में भिन्न नहीं होता है।[1] ब्रांचिंग प्रक्रियाओं का उपयोग प्रजनन मॉडल के लिए किया जाता है, उदाहरण के लिए, व्यक्ति बैक्टीरिया के अनुरूप हो सकते हैं, जिनमें से प्रत्येक एकल समय इकाई में कुछ संभावना के साथ 0,1 या 2 संतान उत्पन्न करता है। ब्रांचिंग प्रक्रियाओं का उपयोग समान गतिशीलता के साथ अन्य प्रणालियों को मॉडल करने के लिए भी किया जा सकता है, उदाहरण के लिए, वंशावली में उपनामों का प्रसार या परमाणु रिएक्टर में न्यूट्रॉन का प्रसार।

ब्रांचिंग प्रक्रियाओं के सिद्धांत में मुख्य प्रश्न अंतिम विलुप्ति की संभावना है, जहां कुछ सीमित पीढ़ियों के बाद कोई व्यक्ति मौजूद नहीं है। वाल्ड के समीकरण का उपयोग करते हुए, यह दिखाया जा सकता है कि पीढ़ी शून्य में व्यक्ति के साथ शुरू, पीढ़ी n के अनुमानित आकार μn जहां μ प्रत्येक व्यक्ति के बच्चों की अनुमानित संख्या है। यदि μ < 1, तो व्यक्तियों की अपेक्षित संख्या तेज़ी से शून्य हो जाती है, जिसका तात्पर्य मार्कोव की असमानता द्वारा संभावना 1 के साथ अंतिम विलुप्त होने से है। वैकल्पिक रूप से, यदि μ> 1, तो अंतिम विलुप्त होने की संभावना 1 से कम है (लेकिन जरूरी नहीं कि शून्य हो; प्रक्रिया पर विचार करें जहां प्रत्येक व्यक्ति के 0 या 100 बच्चे समान संभावना के साथ हों। उस मामले में, μ = 50, लेकिन अंतिम विलुप्ति की संभावना 0.5 से अधिक है, क्योंकि यह संभावना है कि पहले व्यक्ति के 0 बच्चे हैं )। यदि μ = 1, तो अन्तिम विलोपन संभाव्यता 1 के साथ होता है जब तक कि प्रत्येक व्यक्ति के पास हमेशा एक ही बच्चा न हो।

सैद्धांतिक पारिस्थितिकी में, ब्रांचिंग प्रक्रिया के पैरामीटर μ को मूल प्रजनन दर कहा जाता है।

गणितीय सूत्रीकरण

गैल्टन-वाटसन प्रक्रिया का एक शाखाकरण प्रक्रिया का सबसे आम सूत्रीकरण है। चलो जेडn अवधि n में स्थिति को निरूपित करें (अक्सर पीढ़ी n के आकार के रूप में व्याख्या की जाती है), और X को देंn,i अवधि n में सदस्य i के प्रत्यक्ष उत्तराधिकारियों की संख्या को दर्शाने वाला एक यादृच्छिक चर हो, जहाँ Xn,i सभी n ∈{ 0, 1, 2, ...} और i ∈ {1, ..., Z पर स्वतंत्र और समान रूप से वितरित यादृच्छिक चर हैंn}. फिर पुनरावृत्ति समीकरण है

जेड के साथ0 = 1।

वैकल्पिक रूप से, ब्रांचिंग प्रक्रिया को यादृच्छिक चलने के रूप में तैयार किया जा सकता है। चलो एसi अवधि I में स्थिति को निरूपित करें, और X को देंi एक यादृच्छिक चर बनें जो सभी iid से अधिक हो। फिर पुनरावृत्ति समीकरण है

एस के साथ0 = 1. इस फॉर्मूलेशन के लिए कुछ अंतर्ज्ञान प्राप्त करने के लिए, एक सैर की कल्पना करें जहां लक्ष्य हर नोड पर जाना है, लेकिन हर बार पहले से न देखे गए नोड का दौरा किया जाता है, अतिरिक्त नोड्स का पता चलता है जिसे भी जाना चाहिए। चलो एसi I अवधि में प्रकट लेकिन अविभाजित नोड्स की संख्या का प्रतिनिधित्व करते हैं, और X को जाने देंi नोड i का दौरा करने पर प्रकट होने वाले नए नोड्स की संख्या का प्रतिनिधित्व करता है। फिर प्रत्येक अवधि में, प्रकट किए गए लेकिन बिना देखे गए नोड्स की संख्या पिछली अवधि में ऐसे नोड्स की संख्या के बराबर होती है, साथ ही नए नोड्स जो नोड पर जाने पर प्रकट होते हैं, उस नोड को घटाते हैं जिसे देखा गया है। सभी प्रकट नोड्स का दौरा करने के बाद प्रक्रिया समाप्त हो जाती है।

सतत-समय शाखाओं में बंटी प्रक्रियाएं

असतत-समय की शाखाओं में बंटी प्रक्रियाओं के लिए, सभी व्यक्तियों के लिए शाखाओं में बंटने का समय 1 होना तय है। निरंतर-समय की शाखाओं वाली प्रक्रियाओं के लिए, प्रत्येक व्यक्ति एक यादृच्छिक समय (जो एक निरंतर यादृच्छिक चर है) की प्रतीक्षा करता है, और फिर दिए गए वितरण के अनुसार विभाजित करता है। विभिन्न व्यक्तियों के लिए प्रतीक्षा समय स्वतंत्र हैं, और बच्चों की संख्या से स्वतंत्र हैं। सामान्य तौर पर, प्रतीक्षा समय सभी व्यक्तियों के लिए पैरामीटर λ के साथ एक घातीय चर है, ताकि प्रक्रिया मार्कोवियन हो।

गैल्टन वाटसन प्रक्रिया के लिए विलुप्त होने की समस्या

अंतिम विलुप्त होने की संभावना किसके द्वारा दी गई है

किसी भी गैर-तुच्छ मामलों के लिए (तुच्छ मामले वे होते हैं जिनमें जनसंख्या के प्रत्येक सदस्य के लिए कोई संतान न होने की संभावना शून्य होती है - ऐसे मामलों में अंतिम विलुप्त होने की संभावना 0 होती है), अंतिम विलुप्त होने की संभावना एक के बराबर होती है यदि μ ≤ 1 और सख्ती से एक से कम यदि μ > 1.

प्रक्रिया का विश्लेषण संभाव्यता उत्पन्न करने वाले फ़ंक्शन की विधि का उपयोग करके किया जा सकता है। चलो पी0, पी1, पी2, ... प्रत्येक पीढ़ी में प्रत्येक व्यक्ति द्वारा 0, 1, 2,... संतान पैदा करने की संभावना हो। चलो डीm मी द्वारा विलुप्त होने की संभावना होवें पीढ़ी। जाहिर है, डी0 = 0. चूँकि m द्वारा 0 की ओर ले जाने वाले सभी पथों की प्रायिकताएँवें पीढ़ी को जोड़ा जाना चाहिए, विलुप्त होने की संभावना पीढ़ियों में घटती नहीं है। वह है,

इसलिए, डीm एक सीमा d तक अभिसरण करता है, और d अंतिम विलुप्त होने की संभावना है। यदि पहली पीढ़ी में j संतानें हैं, तो mth पीढ़ी तक मरने के लिए, इन पंक्तियों में से प्रत्येक को m − 1 पीढ़ियों में समाप्त होना चाहिए। चूंकि वे स्वतंत्र रूप से आगे बढ़ते हैं, संभावना है (डीm−1) जम्मू । इस प्रकार,

समीकरण का दाहिना भाग प्रायिकता उत्पन्न करने वाला फलन है। मान लीजिए h(z) p के लिए सामान्य जनक फलन हैi:

जनरेटिंग फ़ंक्शन का उपयोग करके, पिछला समीकरण बन जाता है

चूंकि डीm → d, d को हल करके पाया जा सकता है

यह z ≥ 0 के लिए y = z और y = h(z) के प्रतिच्छेदन बिंदुओं को खोजने के बराबर भी है। y = z एक सीधी रेखा है। y = h(z) वर्धमान है (क्योंकि ) और उत्तल (के बाद से ) function. There are at most two intersection points. Since (1,1) is always an intersect point for the two functions, there only exist three cases:

y = h(z) की तीन स्थितियाँ y = z के साथ प्रतिच्छेद करती हैं।

केस 1 का z <1 पर एक और प्रतिच्छेदन बिंदु है (ग्राफ़ में लाल वक्र देखें)।

स्थिति 2 में z = 1 पर केवल एक प्रतिच्छेद बिंदु है। (ग्राफ में हरा वक्र देखें)

स्थिति 3 का एक अन्य प्रतिच्छेद बिंदु z > 1 पर है। (ग्राफ़ में काला वक्र देखें)

मामले 1 में, अंतिम विलुप्त होने की संभावना सख्ती से एक से कम है। मामले 2 और 3 के लिए, अंतिम विलुप्त होने की संभावना एक के बराबर होती है।

यह देखते हुए कि h′(1) = p1+ 2पी2+ 3पी3+ ... = μ वास्तव में संतानों की अपेक्षित संख्या है जो माता-पिता पैदा कर सकते हैं, यह निष्कर्ष निकाला जा सकता है कि किसी दिए गए माता-पिता की संतानों की संख्या के लिए फ़ंक्शन एच (जेड) के साथ एक शाखाकरण प्रक्रिया के लिए, यदि संतानों की औसत संख्या एकल माता-पिता द्वारा उत्पादित एक से कम या उसके बराबर है, तो अंतिम विलुप्त होने की संभावना एक है। यदि एकल माता-पिता द्वारा उत्पादित संतानों की औसत संख्या एक से अधिक है, तो अंतिम विलुप्त होने की संभावना एक से कम है।

आकार पर निर्भर ब्रांचिंग प्रक्रियाएँ

ग्रिमेट द्वारा आयु-निर्भर ब्रांचिंग प्रक्रियाओं के रूप में जानी जाने वाली ब्रांचिंग प्रक्रियाओं के अधिक सामान्य मॉडल की चर्चा के साथ,[2] जिसमें व्यक्ति एक से अधिक पीढ़ी के लिए रहते हैं, कृष्णा आत्रेय ने आकार-निर्भर शाखाकरण प्रक्रियाओं के बीच तीन भेदों की पहचान की है जिनका सामान्य अनुप्रयोग है। अथरेया उप-महत्वपूर्ण, स्थिर और सुपर-क्रिटिकल ब्रांचिंग उपायों के रूप में आकार-निर्भर शाखाओं की प्रक्रियाओं के तीन वर्गों की पहचान करता है। अथरेया के लिए, यदि उप-महत्वपूर्ण और अति-महत्वपूर्ण अस्थिर शाखाओं से बचना है तो केंद्रीय पैरामीटर नियंत्रित करने के लिए महत्वपूर्ण हैं।[3] आकार पर निर्भर ब्रांचिंग प्रक्रियाओं की चर्चा संसाधन-निर्भर ब्रांचिंग प्रक्रिया के विषय के तहत भी की जाती है[4]


विलुप्त होने की समस्या का उदाहरण

विचार करें कि माता-पिता अधिकतम दो संतान पैदा कर सकते हैं। प्रत्येक पीढ़ी में विलुप्त होने की संभावना है:

डी के साथ0= 0. अंतिम विलुप्त होने की संभावना के लिए, हमें d खोजने की आवश्यकता है जो d = p को संतुष्ट करता है0+ प1डी + पी2d2</उप>।

उदाहरण के तौर पर उत्पादित संततियों की संख्या के लिए प्रायिकता p0= 0.1, पृ1= 0.6, और प2= 0.3, पहली 20 पीढ़ियों के विलुप्त होने की संभावना इस प्रकार है:

Generation # (1–10) Extinction probability Generation # (11–20) Extinction probability
1 0.1 11 0.3156
2 0.163 12 0.3192
3 0.2058 13 0.3221
4 0.2362 14 0.3244
5 0.2584 15 0.3262
6 0.2751 16 0.3276
7 0.2878 17 0.3288
8 0.2975 18 0.3297
9 0.3051 19 0.3304
10 0.3109 20 0.331

इस उदाहरण में, हम बीजगणितीय रूप से उस d = 1/3 को हल कर सकते हैं, और यह वह मान है जिस पर विलुप्त होने की संभावना बढ़ती पीढ़ियों के साथ अभिसरित होती है।

शाखाओं में बंटी प्रक्रियाओं का अनुकरण

समस्याओं की एक श्रृंखला के लिए ब्रांचिंग प्रक्रियाओं का अनुकरण किया जा सकता है। सिम्युलेटेड ब्रांचिंग प्रक्रिया का एक विशिष्ट उपयोग विकासवादी जीव विज्ञान के क्षेत्र में है।[5][6] उदाहरण के लिए, फाइलोजेनेटिक पेड़ों को कई मॉडलों के तहत सिम्युलेटेड किया जा सकता है,[7] अनुमान विधियों को विकसित करने और मान्य करने में मदद करने के साथ-साथ परिकल्पना परीक्षण का समर्थन करना।

मल्टी टाइप ब्रांचिंग प्रोसेस

मल्टीटाइप ब्रांचिंग प्रक्रियाओं में, व्यक्ति समान नहीं होते हैं, लेकिन उन्हें n प्रकारों में वर्गीकृत किया जा सकता है। प्रत्येक समय कदम के बाद, प्रकार I का एक व्यक्ति विभिन्न प्रकार के व्यक्तियों का उत्पादन करेगा, और , विभिन्न प्रकारों में बच्चों की संख्या का प्रतिनिधित्व करने वाला एक यादृच्छिक वेक्टर, पर संभाव्यता वितरण को संतुष्ट करता है .

उदाहरण के लिए, कैंसर स्टेम सेल (सीएससी) और नॉन-स्टेम कैंसर सेल (एनएससीसी) की जनसंख्या पर विचार करें। प्रत्येक समय अंतराल के बाद, प्रत्येक सीएससी की प्रायिकता होती है दो सीएससी (सममित विभाजन) का उत्पादन करने के लिए, प्रायिकता एक सीएससी और एक एनएससीसी (असममित विभाजन) उत्पन्न करने की संभावना एक सीएससी (ठहराव), और संभावना का उत्पादन करने के लिए कुछ भी उत्पन्न करने के लिए (मृत्यु); प्रत्येक एनएससीसी की संभावना है दो एनएससीसी (सममित विभाजन) उत्पन्न करने के लिए, प्रायिकता एक एनएससीसी (ठहराव) और संभाव्यता उत्पन्न करने के लिए कुछ भी उत्पन्न नहीं करना (मृत्यु)।[8]


मल्टीटाइप ब्रांचिंग प्रक्रियाओं के लिए बड़ी संख्या का कानून

मल्टीटाइप ब्रांचिंग प्रक्रियाओं के लिए विभिन्न प्रकार की आबादी तेजी से बढ़ती है, विभिन्न प्रकार के अनुपात लगभग निश्चित रूप से कुछ हल्के परिस्थितियों में निरंतर वेक्टर में परिवर्तित हो जाते हैं। यह मल्टीटाइप ब्रांचिंग प्रक्रियाओं के लिए बड़ी संख्या का मजबूत कानून है।

निरंतर-समय के मामलों के लिए, जनसंख्या अपेक्षा के अनुपात एक साधारण अंतर समीकरण प्रणाली को संतुष्ट करते हैं, जिसमें एक अद्वितीय आकर्षक निश्चित बिंदु होता है। यह नियत बिंदु केवल वह सदिश है जिस पर अनुपात बड़ी संख्या के नियम में अभिसरित होते हैं।

अथरेया और नेय द्वारा मोनोग्राफ [9] शर्तों के एक सामान्य समूह को सारांशित करता है जिसके तहत बड़ी संख्या का यह नियम मान्य है। बाद में विभिन्न स्थितियों को त्यागने से कुछ सुधार होते हैं।[10][11]


अन्य ब्रांचिंग प्रक्रियाएं

कई अन्य शाखाएं हैं, उदाहरण के लिए, यादृच्छिक वातावरण में शाखाओं में बंटी प्रक्रियाएं, जिसमें प्रजनन कानून को प्रत्येक पीढ़ी में बेतरतीब ढंग से चुना जाता है, या शाखाकरण प्रक्रियाएं, जहां जनसंख्या का विकास बाहरी प्रभावों या अंतःक्रियात्मक प्रक्रियाओं द्वारा नियंत्रित होता है। ब्रांचिंग प्रक्रियाएं जहां कणों को पुनरुत्पादन करने में सक्षम होने के लिए काम करना पड़ता है (पर्यावरण में संसाधनों का योगदान), और संसाधनों के वितरण को नियंत्रित करने वाली बदलती समाज संरचना में रहते हैं, तथाकथित संसाधन-निर्भर शाखाकरण प्रक्रियाएँ हैं।

सुपरप्रोसेस प्राप्त करने के लिए निकट-महत्वपूर्ण शाखाओं की प्रक्रियाओं की स्केलिंग सीमा का उपयोग किया जा सकता है।

यह भी देखें

संदर्भ

  1. Athreya, K. B. (2006). "Branching Process". पर्यावरणमिति का विश्वकोश. doi:10.1002/9780470057339.vab032. ISBN 978-0471899976.
  2. G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Clarendon Press, Oxford, 1992.
  3. Krishna Athreya and Peter Jagers. Branching Processes. Springer. 1973.
  4. F. Thomas Bruss and M. Duerinckx (2015) "Resource dependent branching processes and the envelope of societies", Annals of Applied Probability. 25: 324–372.
  5. Hagen, O.; Hartmann, K.; Steel, M.; Stadler, T. (2015-05-01). "आयु-निर्भर जाति उद्भवन अनुभवजन्य जातिवृत्तों के आकार की व्याख्या कर सकता है". Systematic Biology (in English). 64 (3): 432–440. doi:10.1093/sysbio/syv001. ISSN 1063-5157. PMC 4395845. PMID 25575504.
  6. Hagen, Oskar; Andermann, Tobias; Quental, Tiago B.; Antonelli, Alexandre; Silvestro, Daniele (May 2018). "आयु-निर्भर विलुप्त होने का आकलन: जीवाश्म और फाइलोजेनी से विपरीत साक्ष्य". Systematic Biology. 67 (3): 458–474. doi:10.1093/sysbio/syx082. PMC 5920349. PMID 29069434.
  7. Hagen, Oskar; Stadler, Tanja (2018). "ट्रीसिमजीएम: सामान्य बेलमैन-हैरिस मॉडल के तहत वंशावली-विशिष्ट वृक्षों का अनुकरण, आर में जाति-विशेष के वंश-विशिष्ट बदलाव और विलुप्त होने के साथ". Methods in Ecology and Evolution (in English). 9 (3): 754–760. doi:10.1111/2041-210X.12917. ISSN 2041-210X. PMC 5993341. PMID 29938014.
  8. Chen, Xiufang; Wang, Yue; Feng, Tianquan; Yi, Ming; Zhang, Xingan; Zhou, Da (2016). "प्रतिवर्ती फेनोटाइपिक प्लास्टिसिटी के कैंसर की गतिशीलता को चिह्नित करने में ओवरशूट और फेनोटाइपिक संतुलन". Journal of Theoretical Biology. 390: 40–49. arXiv:1503.04558. doi:10.1016/j.jtbi.2015.11.008. PMID 26626088. S2CID 15335040.
  9. Athreya, Krishna B.; Ney, Peter E. (1972). ब्रांचिंग प्रक्रियाएं. Berlin: Springer-Verlag. pp. 199–206. ISBN 978-3-642-65371-1.
  10. Janson, Svante (2003). "मल्टीटाइप ब्रांचिंग प्रक्रियाओं और सामान्यीकृत पोल्या कलशों के लिए कार्यात्मक सीमा प्रमेय". Stochastic Processes and Their Applications. 110 (2): 177–245. doi:10.1016/j.spa.2003.12.002.
  11. Jiang, Da-Quan; Wang, Yue; Zhou, Da (2017). "बहु-फेनोटाइप सेल जनसंख्या गतिकी में संभाव्य अभिसरण के रूप में फेनोटाइपिक संतुलन". PLOS ONE. 12 (2): e0170916. Bibcode:2017PLoSO..1270916J. doi:10.1371/journal.pone.0170916. PMC 5300154. PMID 28182672.
  • C. M. Grinstead and J. L. Snell, Introduction to Probability Archived 2011-07-27 at the Wayback Machine, 2nd ed. Section 10.3 discusses branching processes in detail together with the application of generating functions to study them.
  • G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Clarendon Press, Oxford, 1992. Section 5.4 discusses the model of branching processes described above. Section 5.5 discusses a more general model of branching processes known as age-dependent branching processes, in which individuals live for more than one generation.

श्रेणी: मार्कोव प्रक्रियाएं