मिस्री अंश

From Vigyanwiki
Revision as of 21:13, 7 February 2023 by alpha>Shalini Verma

मिस्री अंश विशिष्ट इकाई भिन्नों का परिमित योग है, जैसे

अर्थात्, व्यंजक में प्रत्येक भिन्न (गणित) का अंश 1 के बराबर होता है और हर धनात्मक पूर्णांक होता है, और सभी हर एक दूसरे से भिन्न होते हैं। इस प्रकार के व्यंजक का मान धनात्मक संख्या परिमेय संख्या होती है ; उदाहरण के लिए ऊपर मिस्री अंश का योग है . प्रत्येक धनात्मक परिमेय संख्या को मिस्री भिन्न द्वारा दर्शाया जा सकता है। इस प्रकार की रकम, और इसी तरह की रकम भी शामिल है और योग के रूप में, प्राचीन मिस्रवासियों द्वारा परिमेय संख्याओं के लिए गंभीर अंकन के रूप में उपयोग किया जाता था, और मध्यकाल में अन्य सभ्यताओं द्वारा उपयोग किया जाता रहा। आधुनिक गणितीय संकेतन में, मिस्र के अंशों को अश्लील अंशों और दशमलव संकेतन से हटा दिया गया है। हालांकि, मिस्र के अंश आधुनिक संख्या सिद्धांत और मनोरंजक गणित के साथ-साथ गणित के इतिहास के आधुनिक ऐतिहासिक अध्ययनों में अध्ययन की वस्तु बने हुए हैं।

अनुप्रयोग

उनके ऐतिहासिक उपयोग से परे, मिस्र के अंशों के भिन्नात्मक संख्याओं के अन्य प्रतिनिधित्वों पर कुछ व्यावहारिक लाभ हैं। उदाहरण के लिए, मिस्र के अंश भोजन या अन्य वस्तुओं को समान भागों में विभाजित करने में मदद कर सकते हैं।[1] उदाहरण के लिए, यदि कोई 5 पिज़्ज़ा को 8 खाने वालों में समान रूप से विभाजित करना चाहता है, तो मिस्र का अंश

इसका मतलब है कि प्रत्येक डाइनर को आधा पिज़्ज़ा और एक पिज़्ज़ा का आठवां हिस्सा मिलता है, उदाहरण के लिए 4 पिज़्ज़ा को 8 हिस्सों में विभाजित करके, और शेष पिज़्ज़ा को 8 आठवें हिस्से में विभाजित करके।

इसी तरह, हालांकि प्रत्येक भोजनकर्ता को एक पिज़्ज़ा देकर और शेष पिज़्ज़ा को 12 भागों में विभाजित करके (शायद इसे नष्ट करके) 12 खाने वालों के बीच 13 पिज़्ज़ा को विभाजित किया जा सकता है, कोई यह नोट कर सकता है कि

और 6 पिज्जा को आधा, 4 को तिहाई और शेष 3 को चौथाई में विभाजित करें, और फिर प्रत्येक भोजनकर्ता को आधा, एक तिहाई और एक चौथाई दें।

मिस्र के अंश रस्सी से जलने वाली पहेलियों का समाधान प्रदान कर सकते हैं, जिसमें दी गई अवधि को गैर-समान रस्सियों को प्रज्वलित करके मापा जाता है जो एक इकाई समय के बाद जल जाती हैं। समय की एक इकाई के किसी भी तर्कसंगत अंश को इकाई अंशों के योग में अंश का विस्तार करके और फिर प्रत्येक इकाई अंश के लिए मापा जा सकता है , रस्सी को जलाना ताकि वह हमेशा रहे एक साथ जले हुए बिंदु जहां यह जल रहा है। इस आवेदन के लिए, इकाई अंशों का एक दूसरे से अलग होना आवश्यक नहीं है। हालाँकि, इस समाधान के लिए अनंत संख्या में पुन: प्रकाश व्यवस्था की आवश्यकता हो सकती है।[2]


प्रारंभिक इतिहास

मिस्र के मध्य साम्राज्य में मिस्र के अंश संकेतन को विकसित किया गया था। पांच शुरुआती ग्रंथ जिनमें मिस्र के अंश दिखाई देते हैं, वे थे मिस्र के गणितीय लेदर रोल, मास्को गणितीय पेपिरस, रीस्नर पपीरस, कहुँ पेपिरस और अख्मीम लकड़ी की गोलियाँ बाद के एक पाठ, राइंड मैथमेटिकल पेपिरस ने मिस्र के अंशों को लिखने के बेहतर तरीके पेश किए। राइंड पपीरस फुसफुसाना द्वारा लिखा गया था और द्वितीय मध्यवर्ती काल से दिनांकित है; इसमें परिमेय संख्याओं के लिए एक RMP 2/n तालिका|मिस्र के अंश विस्तार की तालिका शामिल है , साथ ही 84 शब्द समस्या (गणित शिक्षा)। प्रत्येक समस्या का समाधान स्क्रिबल शॉर्टहैंड में लिखा गया था, जिसमें सभी 84 समस्याओं के अंतिम उत्तर मिस्र के अंश संकेतन में व्यक्त किए गए थे। के लिए विस्तार की तालिकाएँ राइंड पेपाइरस के समान कुछ अन्य ग्रंथों में भी दिखाई देता है। हालांकि, जैसा कि काहुन पपाइरस दिखाता है, शास्त्रियों द्वारा अपनी गणनाओं के भीतर भद्दे अंशों का भी उपयोग किया गया था।

अंकन

उनके मिस्र के अंश संकेतन में प्रयुक्त इकाई अंशों को लिखने के लिए, चित्रलिपि लिपि में, मिस्रियों ने मिस्र के चित्रलिपि को रखा

<hiero>D21</hiero>

(er, [one] बीच में या संभवतः रे, माउथ) उस संख्या के गुणक व्युत्क्रम का प्रतिनिधित्व करने के लिए संख्या के ऊपर। इसी प्रकार हिएरेटिक लिपि में उन्होंने संख्या का प्रतिनिधित्व करने वाले अक्षर पर रेखा खींची। उदाहरण के लिए:

<hiero>D21:Z1*Z1*Z1</hiero> <hiero>D21:V20</hiero>

मिस्रियों के लिए विशेष प्रतीक थे , , और से अधिक संख्याओं के आकार को कम करने के लिए उपयोग किया जाता था जब ऐसी संख्याओं को मिस्री भिन्न श्रृंखला में बदला गया। इन विशेष अंशों में से किसी एक को घटाने के बाद शेष संख्या को मिस्र के सामान्य अंश संकेतन के अनुसार विशिष्ट इकाई अंशों के योग के रूप में लिखा गया था।

<hiero>Aa13</hiero> <hiero>D22</hiero> <hiero>D23</hiero>

मिस्रियों ने फॉर्म के अंशों के विशेष सेट को निरूपित करने के लिए पुराने साम्राज्य से संशोधित वैकल्पिक संकेतन का भी उपयोग किया (के लिए ) और इन संख्याओं का योग, जो आवश्यक रूप से द्विगुणित परिमेय संख्याएँ हैं। सिद्धांत (अब बदनाम) के बाद इन्हें होरस-आई अंश कहा गया है[3] कि वे आई ऑफ होरस प्रतीक के भागों पर आधारित थे। उनका उपयोग मध्य साम्राज्य में मिस्र के अंशों के लिए हेकाट (मात्रा इकाई) को उप-विभाजित करने के लिए बाद के अंकन के साथ किया गया था, अनाज, रोटी और मात्रा की अन्य छोटी मात्रा के लिए प्राथमिक प्राचीन मिस्र की मात्रा माप, जैसा कि अखमीम लकड़ी की गोली में वर्णित है। यदि हेकाट के आई ऑफ होरस फ्रैक्शन में मात्रा व्यक्त करने के बाद कोई शेष बचता है, तो शेष को मिस्र के सामान्य अंश संकेतन का उपयोग करते हुए आरओ के गुणकों के रूप में लिखा जाता है, जो एक इकाई के बराबर होता है। एक हेकाट का।

गणना के तरीके

गणित के आधुनिक इतिहासकारों ने मिस्र के लोगों द्वारा मिस्र के अंशों की गणना में इस्तेमाल की जाने वाली विधियों की खोज करने के प्रयास में राइंड पपाइरस और अन्य प्राचीन स्रोतों का अध्ययन किया है। विशेष रूप से, इस क्षेत्र में अध्ययन ने फॉर्म की संख्याओं के विस्तार की तालिकाओं को समझने पर ध्यान केंद्रित किया है राइंड पपाइरस में। हालांकि इन विस्तारों को आमतौर पर बीजगणितीय सर्वसमिकाओं के रूप में वर्णित किया जा सकता है, मिस्रियों द्वारा उपयोग की जाने वाली विधियाँ इन सर्वसमिकाओं के सीधे अनुरूप नहीं हो सकती हैं। इसके अतिरिक्त, तालिका में विस्तार किसी पहचान से मेल नहीं खाता; बल्कि, विभिन्न सर्वसमिकाएँ अभाज्य संख्या और मिश्रित संख्या हर के लिए विस्तार से मेल खाती हैं, और एक से अधिक पहचान प्रत्येक प्रकार की संख्याओं के लिए उपयुक्त होती हैं:

  • छोटे विषम अभाज्य भाजक के लिए , विस्तार
    प्रयोग किया गया।
  • बड़े अभाज्य भाजक के लिए, रूप का विस्तार
    इस्तेमाल किया गया था, जहां एक संख्या है जिसके बीच कई विभाजक (जैसे व्यावहारिक संख्या) हैं और . शेष अवधि संख्या का प्रतिनिधित्व करके विस्तारित किया गया था के भाजक के योग के रूप में और अंश बनाना ऐसे प्रत्येक विभाजक के लिए इस राशि में।[4] उदाहरण के तौर पर, अहम्स का विस्तार इस पैटर्न के साथ फिट बैठता है और , जैसा और . किसी दिए गए के लिए इस प्रकार के कई अलग-अलग विस्तार हो सकते हैं ; हालांकि, जैसा कि के.एस. ब्राउन ने देखा, मिस्रियों द्वारा चुना गया विस्तार अक्सर वह था जो इस पैटर्न को फिट करने वाले सभी विस्तारों के बीच सबसे बड़ा भाजक जितना संभव हो उतना छोटा होता था।
  • कुछ समग्र भाजक के लिए, के रूप में गुणनखंडित , के लिए विस्तार के विस्तार का रूप है प्रत्येक भाजक से गुणा करके . ऐसा प्रतीत होता है कि इस पद्धति का उपयोग राइंड पेपिरस में कई मिश्रित संख्याओं के लिए किया गया है,[5] लेकिन वहाँ अपवाद हैं, विशेष रूप से , , और .[6]
  • विस्तार भी कर सकते हैं
    उदाहरण के लिए, अहम्स का विस्तार होता है . बाद के शास्त्रियों ने इस विस्तार के अधिक सामान्य रूप का उपयोग किया,
    जो कब काम करता है का गुणज है .[7]
  • राइंड पपीरस में अंतिम (प्राइम) विस्तार, , इनमें से किसी भी रूप में फ़िट नहीं होता, बल्कि इसके बजाय विस्तार का उपयोग करता है
    के मूल्य की परवाह किए बिना लागू किया जा सकता है . वह है, . कई मामलों के लिए मिस्र के गणितीय चमड़े के रोल में संबंधित विस्तार का भी इस्तेमाल किया गया था।

बाद में उपयोग

यूनानी काल और मध्य युग में मिस्र के अंश संकेतन का उपयोग जारी रहा,[8] बेबीलोनियन गणित साठवाँ|बेस-60 संकेतन जैसे विकल्पों की तुलना में अंकन की भद्दापन के बारे में टॉलेमी के अल्मागेस्ट के रूप में शिकायतों के बावजूद। 9वीं शताब्दी के भारत में जैन गणितज्ञ महावीर (गणितज्ञ) द्वारा इकाई अंशों में अपघटन की संबंधित समस्याओं का भी अध्ययन किया गया था।[9] मध्ययुगीन यूरोपीय गणित का महत्वपूर्ण पाठ, पीसा के लियोनार्डो का अबेकस की किताब (1202) (आमतौर पर फिबोनाची के रूप में जाना जाता है), मध्य युग में मिस्र के अंशों के उपयोग में कुछ अंतर्दृष्टि प्रदान करता है, और उन विषयों का परिचय देता है जो आधुनिक में महत्वपूर्ण बने हुए हैं। इन श्रृंखलाओं का गणितीय अध्ययन।

लिबर अबाची का प्राथमिक विषय दशमलव और अशिष्ट अंश संकेतन से जुड़ी गणना है, जिसने अंततः मिस्र के अंशों को बदल दिया। फाइबोनैचि ने स्वयं भिन्नों के योग के साथ मिश्रित मूलांक संकेतन के संयोजन को शामिल करते हुए भिन्नों के लिए जटिल संकेतन का उपयोग किया। फाइबोनैचि की पुस्तक में कई गणनाओं में मिस्र के अंशों के रूप में दर्शाई गई संख्याएँ और इस पुस्तक का एक भाग शामिल है[10] अश्लील भिन्नों को मिस्री भिन्नों में बदलने के तरीकों की सूची प्रदान करता है। यदि संख्या पहले से ही इकाई अंश नहीं है, तो इस सूची में पहली विधि अंश को भाजक के विभाजक के योग में विभाजित करने का प्रयास है; यह तब भी संभव है जब भाजक व्यावहारिक संख्या हो, और लिबर अबाकी में व्यावहारिक संख्या 6, 8, 12, 20, 24, 60 और 100 के लिए इस प्रकार के विस्तार की तालिकाएं शामिल हैं।

अगली कई विधियों में बीजगणितीय सर्वसमिकाएं शामिल हैं जैसे कि

उदाहरण के लिए, फाइबोनैचि अंश का प्रतिनिधित्व करता है 8/11 अंश को दो संख्याओं के योग में विभाजित करके, जिनमें से प्रत्येक एक से अधिक भाजक को विभाजित करता है: 8/11 = 6/11 + 2/11. फाइबोनैचि उपरोक्त बीजगणितीय पहचान को इन दो भागों में लागू करता है, जिससे विस्तार होता है 8/11 = 1/2 + 1/22 + 1/6 + 1/66. फाइबोनैचि भाजक के लिए समान विधियों का वर्णन करता है जो कई कारकों वाली संख्या से दो या तीन कम हैं।

दुर्लभ मामले में कि ये अन्य विधियां विफल हो जाती हैं, फाइबोनैचि मिस्र के अंशों के लिए लालची एल्गोरिथ्म का सुझाव देता है मिस्र के अंशों की गणना के लिए लालची एल्गोरिदम, जिसमें व्यक्ति बार-बार सबसे छोटे भाजक के साथ इकाई अंश का चयन करता है जो शेष अंश से बड़ा नहीं होता है: अर्थात, अधिक आधुनिक अंकन में, हम अंश को प्रतिस्थापित करते हैं x/y विस्तार द्वारा

कहाँ ⌈ ⌉ तल और छत के कार्यों का प्रतिनिधित्व करता है; तब से (−y) mod x < x, यह विधि परिमित विस्तार देती है।

फाइबोनैचि इस तरह के पहले विस्तार के बाद दूसरी विधि पर स्विच करने का सुझाव देता है, लेकिन वह ऐसे उदाहरण भी देता है जिसमें यह लालची विस्तार तब तक दोहराया गया जब तक कि पूर्ण मिस्री अंश विस्तार का निर्माण नहीं हो गया: 4/13 = 1/4 + 1/18 + 1/468 और 17/29 = 1/2 + 1/12 + 1/348.

प्राचीन मिस्र के विस्तार या अधिक आधुनिक तरीकों की तुलना में, यह विधि ऐसे विस्तार उत्पन्न कर सकती है जो बड़े भाजक के साथ काफी लंबे हैं, और फिबोनाची ने स्वयं इस विधि द्वारा उत्पन्न विस्तार की अजीबता को नोट किया। उदाहरण के लिए, लालची पद्धति का विस्तार होता है

जबकि अन्य तरीकों से कम विस्तार होता है
सिल्वेस्टर के अनुक्रम 2, 3, 7, 43, 1807, ... को संख्या 1 के लिए इस प्रकार के अनंत लालची विस्तार द्वारा उत्पन्न के रूप में देखा जा सकता है, जहां प्रत्येक चरण पर हम भाजक चुनते हैं y/x ⌋ + 1 के बजाय y/x, और कभी-कभी फाइबोनैचि के लालची एल्गोरिथ्म का श्रेय जेम्स जोसेफ सिल्वेस्टर को दिया जाता है।

लालची एल्गोरिथम के अपने विवरण के बाद, फाइबोनैचि ने अंश का विस्तार करते हुए एक और तरीका सुझाया a/b कई विभाजक वाली संख्या c की खोज करके b/2 < c < b, बदल रहा है a/b द्वारा ac/bc, और ac को bc के विभाजकों के योग के रूप में विस्तारित करना, Hultsch और Bruins द्वारा प्रस्तावित विधि के समान, राइंड पेपिरस में कुछ विस्तारों की व्याख्या करने के लिए।

आधुनिक संख्या सिद्धांत

हालांकि मिस्र के अंश अब गणित के अधिकांश व्यावहारिक अनुप्रयोगों में उपयोग नहीं किए जाते हैं, आधुनिक संख्या सिद्धांतकारों ने उनसे संबंधित कई अलग-अलग समस्याओं का अध्ययन करना जारी रखा है। इनमें मिस्र के अंश के प्रतिनिधित्व में लंबाई या अधिकतम भाजक की सीमा की समस्याएँ शामिल हैं, कुछ विशेष रूपों के विस्तार का पता लगाना या जिसमें सभी विशेष प्रकार के हर हैं, मिस्र के अंश के विस्तार के लिए विभिन्न विधियों की समाप्ति, और यह दिखाना कि विस्तार किसी के लिए भी मौजूद है पर्याप्त रूप से चिकनी संख्याओं का पर्याप्त घना सेट।

  • पॉल एर्डोस के शुरुआती प्रकाशनों में से एक ने यह साबित कर दिया कि हार्मोनिक प्रगति (गणित) के लिए मिस्र के अंश को पूर्णांक का प्रतिनिधित्व करना संभव नहीं है। इसका कारण यह है कि, आवश्यक रूप से, प्रगति का कम से कम भाजक अभाज्य संख्या से विभाज्य होगा जो किसी अन्य भाजक को विभाजित नहीं करता है।[11] उनकी मृत्यु के लगभग 20 साल बाद एर्डोस का नवीनतम प्रकाशन यह साबित करता है कि प्रत्येक पूर्णांक का प्रतिनिधित्व होता है जिसमें सभी भाजक तीन प्राइम्स के उत्पाद होते हैं।[12]
  • संख्या सिद्धांत में एर्डोस-ग्राहम अनुमान बताता है कि, यदि 1 से अधिक पूर्णांकों को बहुत से उपसमुच्चय में विभाजित किया जाता है, तो उपसमुच्चय में से एक का स्वयं का परिमित उपसमुच्चय होता है जिसका पारस्परिक योग 1 होता है। यानी हर के लिए r > 0, और एक से अधिक पूर्णांकों का प्रत्येक r-रंग, इन पूर्णांकों का परिमित मोनोक्रोमैटिक उपसमुच्चय S होता है जैसे कि
    अनुमान 2003 में अर्नेस्ट एस. क्रोट III द्वारा सिद्ध किया गया था।
  • Znám की समस्या और प्राथमिक स्यूडोपरफेक्ट संख्याएं फॉर्म के मिस्र के अंशों के अस्तित्व से निकटता से संबंधित हैं
    उदाहरण के लिए, प्राथमिक स्यूडोपरफेक्ट संख्या 1806 अभाज्य संख्याओं 2, 3, 7 और 43 का गुणनफल है, और मिस्री भिन्न को जन्म देती है 1 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1806.
  • मिस्र के भिन्नों को आम तौर पर परिभाषित किया जाता है कि सभी हरों को अलग-अलग होने की आवश्यकता होती है, लेकिन बार-बार हरों को अनुमति देने के लिए इस आवश्यकता को कम किया जा सकता है। हालांकि, मिस्र के अंशों का यह आराम से रूप कम अंशों का उपयोग करके किसी भी संख्या का प्रतिनिधित्व करने की अनुमति नहीं देता है, क्योंकि दोहराए गए अंशों के साथ किसी भी विस्तार को प्रतिस्थापन के बार-बार आवेदन से समान या छोटी लंबाई के मिस्र के अंश में परिवर्तित किया जा सकता है।
    यदि k विषम है, या केवल प्रतिस्थापित करके 1/k + 1/k द्वारा 2/k यदि k सम है। यह परिणाम सर्वप्रथम द्वारा सिद्ध किया गया था Takenouchi (1921).
  • ग्राहम और ज्वेट[13] साबित किया कि समान रूप से प्रतिस्थापन के माध्यम से बार-बार हर वाले विस्तार को (लंबे) मिस्र के अंशों में परिवर्तित करना संभव है
    इस पद्धति से बड़े भाजक के साथ लंबा विस्तार हो सकता है, जैसे
    Botts (1967) मूल रूप से इस प्रतिस्थापन तकनीक का उपयोग यह दिखाने के लिए किया गया था कि किसी भी परिमेय संख्या में मनमाने ढंग से बड़े न्यूनतम भाजक के साथ मिस्र के अंश का प्रतिनिधित्व होता है।
  • कोई अंश x/y मिस्री अंश प्रतिनिधित्व है जिसमें अधिकतम भाजक से घिरा हुआ है[14]
    और अधिक से अधिक एक प्रतिनिधित्व
    शर्तें।[15] शब्दों की संख्या कभी-कभी कम से कम आनुपातिक होनी चाहिए log log y; उदाहरण के लिए यह अनुक्रम में भिन्नों के लिए सत्य है 1/2, 2/3, 6/7, 42/43, 1806/1807, ... जिसके हर सिल्वेस्टर के अनुक्रम का निर्माण करते हैं। ऐसा अनुमान लगाया गया है O(log log y) शर्तें हमेशा पर्याप्त होती हैं।[16] ऐसे निरूपणों को खोजना भी संभव है जिनमें अधिकतम भाजक और पदों की संख्या दोनों ही कम हों।[17]
  • Graham (1964) उन संख्याओं की विशेषता है जिन्हें मिस्र के अंशों द्वारा दर्शाया जा सकता है जिसमें सभी भाजक nth घात हैं। विशेष रूप से, परिमेय संख्या q को मिस्री अंश के रूप में वर्ग भाजक के रूप में दर्शाया जा सकता है यदि और केवल यदि q दो अर्ध-खुले अंतरालों में से एक में स्थित है
  • Martin (1999) दिखाया गया है कि किसी भी परिमेय संख्या में बहुत सघन विस्तार होता है, किसी भी पर्याप्त बड़े N के लिए N तक हर के एक निरंतर अंश का उपयोग करते हुए।
  • एंगेल विस्तार, जिसे कभी-कभी मिस्र का उत्पाद कहा जाता है, मिस्र के अंश विस्तार का रूप है जिसमें प्रत्येक भाजक पिछले 1 का गुणक होता है:
    इसके अलावा, गुणकों का क्रम एiगैर-घटना आवश्यक है। प्रत्येक परिमेय संख्या का परिमित एंगेल विस्तार होता है, जबकि अपरिमेय संख्याओं का अनंत एंगेल विस्तार होता है।
  • Anshel & Goldfeld (1991) उन संख्याओं का अध्ययन करें जिनमें कई अलग-अलग मिस्री भिन्न निरूपण हैं जिनमें समान संख्या में शब्द और भाजक का समान गुणनफल है; उदाहरण के लिए, उनके द्वारा प्रदान किए जाने वाले उदाहरणों में से एक है
    प्राचीन मिस्रियों के विपरीत, वे इन विस्तारों में भाजक को दोहराने की अनुमति देते हैं। वे इस समस्या के लिए अपने परिणामों को संख्यात्मक मापदंडों की छोटी संख्या द्वारा एबेलियन समूह के मुक्त उत्पादों के लक्षण वर्णन पर लागू करते हैं: कम्यूटेटर उपसमूह का रैंक, मुक्त उत्पाद में शब्दों की संख्या और कारकों के आदेशों का उत्पाद।
  • नंबर एक के अलग-अलग एन-टर्म मिस्री अंश निरूपण की संख्या ऊपर और नीचे n के दोहरे घातीय कार्यों से बंधी हुई है।[18]


खुली समस्याएं

गणितज्ञों के काफी प्रयास के बावजूद, मिस्र के अंशों के संबंध में कुछ उल्लेखनीय समस्याएं अनसुलझी हैं।

  • एर्डोस-स्ट्रॉस अनुमान[16] प्रपत्र के 1 अंश के लिए सबसे कम विस्तार की लंबाई से संबंधित है 4/n. विस्तार करता है
    प्रत्येक एन के लिए मौजूद है? यह सभी के लिए सच माना जाता है n < 1017, और सभी के लिए लेकिन n के संभावित मूल्यों का एक लुप्त हो जाने वाला छोटा अंश, लेकिन अनुमान का सामान्य सत्य अज्ञात रहता है।
  • यह अज्ञात है कि विषम भाजक वाले प्रत्येक अंश के लिए अजीब लालची विस्तार मौजूद है या नहीं। यदि फाइबोनैचि की लालची पद्धति को संशोधित किया जाता है ताकि यह हमेशा सबसे छोटा संभव विषम भाजक चुन सके, तो यह संशोधित एल्गोरिथ्म किन परिस्थितियों में परिमित विस्तार उत्पन्न करता है? स्पष्ट आवश्यक शर्त यह है कि प्रारंभिक अंश x/y विषम भाजक y है, और यह अनुमान लगाया गया है लेकिन ज्ञात नहीं है कि यह भी पर्याप्त शर्त है। यह ज्ञात है[19] वह हर x/y विषम वाई के साथ लालची एल्गोरिदम की तुलना में अलग विधि का उपयोग करके अलग-अलग अजीब इकाई अंशों में विस्तार होता है।
  • कम से कम संभव शर्तों के साथ किसी दिए गए नंबर के मिस्र के अंश प्रतिनिधित्व को खोजने के लिए क्रूर-बल खोज एल्गोरिदम का उपयोग करना संभव है[20] या सबसे बड़े भाजक को कम करना; हालाँकि, ऐसे एल्गोरिदम काफी अक्षम हो सकते हैं। इन समस्याओं के लिए बहुपद समय एल्गोरिदम का अस्तित्व, या अधिक आम तौर पर ऐसी समस्याओं के एल्गोरिदम का विश्लेषण अज्ञात रहता है।

Guy (2004) इन समस्याओं का अधिक विस्तार से वर्णन करता है और कई अतिरिक्त खुली समस्याओं को सूचीबद्ध करता है।

यह भी देखें

टिप्पणियाँ


संदर्भ


बाहरी संबंध