साइक्लोटोमिक क्षेत्र
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (September 2012) (Learn how and when to remove this template message) |
संख्या सिद्धांत में, एक साइक्लोटोमिक क्षेत्र एक संख्या क्षेत्र है जो संयोजन (क्षेत्र सिद्धांत) द्वारा एकता की एक जटिल संख्या जड़ से प्राप्त होता है Qपरिमेय संख्याओं का क्षेत्र (गणित)।
फ़र्मेट के अंतिम प्रमेय के साथ उनके संबंध के कारण चक्रीय क्षेत्रों ने आधुनिक अमूर्त बीजगणित और संख्या सिद्धांत के विकास में महत्वपूर्ण भूमिका निभाई। यह इन क्षेत्रों के अंकगणित (अभाज्य संख्या के लिए) की उनकी गहन जाँच की प्रक्रिया में थाn) - और अधिक सटीक रूप से, उनके पूर्णांकों के छल्ले में अद्वितीय गुणनखंडन की विफलता के कारण - कि गंभीर दु:ख ने पहली बार एक आदर्श संख्या की अवधारणा पेश की और अपने प्रसिद्ध कुमेर की सर्वांगसमताओं को साबित किया।
परिभाषा
के लिए n ≥ 1, होने देना ζn = e2πi/n ∈ C; यह एकता की आदिम जड़ है nएकता की वें जड़। फिर nवें साइक्लोटोमिक फील्ड फील्ड एक्सटेंशन है Q(ζn) का Q द्वारा उत्पन्न ζn.
गुण
- nn}}वां साइक्लोटोमिक बहुपद
- इरेड्यूसिबल बहुपद है, इसलिए यह न्यूनतम बहुपद (क्षेत्र सिद्धांत) है ζn ऊपर Q.
- का संयुग्मी तत्व (क्षेत्र सिद्धांत)। ζn में C इसलिए अन्य आदिम हैं nएकता की वें जड़ें: ζk
n के लिए 1 ≤ k ≤ n साथ gcd(k, n) = 1. - के क्षेत्र विस्तार की डिग्री Q(ζn) इसलिए [Q(ζn) : Q] = deg Φn = φ(n), कहाँ φ यूलर का कुल कार्य है।
- के एक बहुपद की जड़ xn − 1 की शक्तियाँ हैं ζn, इसलिए Q(ζn) का विभाजन क्षेत्र है xn − 1 (या का Φ(x)) ऊपर Q.
- इसलिए Q(ζn) का गाल्वा विस्तार है Q.
- गैलोज़ समूह पूर्णांकों के गुणनात्मक समूह में प्राकृतिक रूपांतरण है गुणनात्मक समूह , जिसमें उलटा अवशेष मॉड्यूलर अंकगणित होता हैn, जो अवशेष हैं a mod n साथ 1 ≤ a ≤ n और gcd(a, n) = 1. समरूपता प्रत्येक को भेजती है को a mod n, कहाँ a एक पूर्णांक ऐसा है σ(ζn) = ζa
n. - के पूर्णांकों का वलय Q(ζn) है Z[ζn].
- के लिए n > 2, विस्तार के बीजगणितीय संख्या क्षेत्र का विविक्तकर Q(ζn) / Q है[1]
- विशेष रूप से, Q(ζn) / Q विभाजित न होने वाले प्रत्येक अभाज्य के ऊपर अविभाजित है n.
- अगर n एक प्रधान की शक्ति है p, तब Q(ζn) / Q ऊपर पूर्ण रूप से विभक्त है p.
- अगर q विभाजित न होने वाला अभाज्य है n, फिर फ्रोबेनियस तत्व के अवशेष से मेल खाता है q में .
- एकता की जड़ों का समूह Q(ζn) आदेश है n या 2n, चाहे के अनुसार n सम या विषम है।
- इकाई समूह Z[ζn]× रैंक का एक अंतिम रूप से उत्पन्न एबेलियन समूह है φ(n)/2 – 1, किसी के लिए n > 2, डिरिचलेट इकाई प्रमेय द्वारा। विशेष रूप से, Z[ζn]× केवल के लिए परिमित समूह है n ∈ {1, 2, 3, 4, 6}. का मरोड़ उपसमूह Z[ζn]× में एकता की जड़ों का समूह है Q(ζn), जिसका वर्णन पिछले मद में किया गया था। साइक्लोटॉमिक इकाइयां एक उपसमूह उपसमूह का एक स्पष्ट परिमित-सूचकांक बनाती हैं Z[ζn]×.
- क्रोनेकर-वेबर प्रमेय कहता है कि प्रत्येक परिमित विस्तार एबेलियन विस्तार Q में C में निहित है Q(ζn) कुछ के लिए n. समतुल्य, सभी साइक्लोटॉमिक क्षेत्रों का मिलन Q(ζn) अधिकतम एबेलियन एक्सटेंशन है Qab का Q.
नियमित बहुभुजों के साथ संबंध
कार्ल फ्रेडरिक गॉस ने निर्माण योग्य बहुभुज की समस्या के संबंध में, एक नियमित बहुभुज|नियमित, साइक्लोटोमिक क्षेत्रों के सिद्धांत में प्रारंभिक प्रगति की n-कम्पास और सीधी धार के साथ। उनका आश्चर्यजनक परिणाम जो उनके पूर्ववर्तियों से बच गया था, वह यह था कि एक नियमित heptadecagon | 17-गॉन का निर्माण किया जा सकता था। अधिक आम तौर पर, किसी भी पूर्णांक के लिए n ≥ 3, निम्नलिखित समतुल्य हैं:
- नियमित n-गॉन रचनात्मक है;
- खेतों का एक क्रम है, से शुरू होता है Q और के साथ समाप्त Q(ζn), जैसे कि प्रत्येक पिछले क्षेत्र का द्विघात विस्तार है;
- φ(n) 2 की शक्ति है;
- कुछ पूर्णांकों के लिए a, r ≥ 0 और फर्मेट प्राइम्स . (एक फर्मेट प्राइम एक अजीब प्राइम है p ऐसा है कि p − 1 2 की शक्ति है। ज्ञात फर्मेट प्राइम 3 (संख्या), 5 (संख्या), 17 (संख्या), 257 (संख्या), 65537 (संख्या) हैं, और यह संभावना है कि कोई अन्य नहीं है।)
छोटे उदाहरण
- n = 3 और n = 6: समीकरण और बताते हैं कि Q(ζ3) = Q(ζ6) = Q(√−3 ), जो का द्विघात विस्तार है Q. तदनुसार, नियमित 3-गॉन और नियमित 6-गॉन रचनात्मक होते हैं।
- n = 4: इसी प्रकार, ζ4 = i, इसलिए Q(ζ4) = Q(i), और एक नियमित 4-गॉन रचनात्मक है।
- n = 5: फील्ड Q(ζ5) का द्विघात विस्तार नहीं है Q, लेकिन यह द्विघात विस्तार का द्विघात विस्तार है Q(√5 ), इसलिए एक नियमित 5-गॉन निर्माण योग्य है।
फ़र्मेट की अंतिम प्रमेय के साथ संबंध
फ़र्मेट की अंतिम प्रमेय को सिद्ध करने का एक स्वाभाविक तरीका द्विपद का गुणनखण्ड करना है xn + yn, कहाँ n एक विषम अभाज्य है, जो फ़र्मेट के समीकरण के एक पक्ष में प्रकट होता है
निम्नलिखित नुसार:
यहाँ x और y साधारण पूर्णांक हैं, जबकि कारक साइक्लोटोमिक क्षेत्र में बीजगणितीय पूर्णांक हैं Q(ζn). यदि अंकगणित का मौलिक प्रमेय साइक्लोटोमिक पूर्णांकों में है Z[ζn] , तो इसका उपयोग फ़र्मेट के समीकरण के गैर-तुच्छ समाधानों के अस्तित्व को रद्द करने के लिए किया जा सकता है।
फ़र्मेट के अंतिम प्रमेय से निपटने के कई प्रयास इन पंक्तियों के साथ आगे बढ़े, और फ़र्मेट के प्रमाण दोनों के लिए n = 4 और यूलर का प्रमाण n = 3 इन शर्तों में पुनर्गठित किया जा सकता है। की पूरी सूची n जिसके लिए Q(ζn) अद्वितीय गुणनखंड है[2]
- 1 से 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 48, 50, 54, 60, 66, 70, 84 , 90.
अर्न्स्ट कुमेर ने अद्वितीय कारककरण की विफलता से निपटने का एक तरीका खोजा। उन्होंने साइक्लोटोमिक पूर्णांकों में अभाज्य संख्याओं के लिए एक प्रतिस्थापन प्रस्तुत किया Z[ζn], वर्ग संख्या (संख्या सिद्धांत) के माध्यम से अद्वितीय गुणनखंडन की विफलता को मापा hn और साबित कर दिया कि अगर hp एक प्रधान द्वारा विभाज्य नहीं है p (ऐसा p नियमित अभाज्य कहलाते हैं) तो फ़र्मेट का प्रमेय प्रतिपादक के लिए सत्य है n = p. इसके अलावा, कुमेर की कसौटी यह निर्धारित करने के लिए कि कौन से अभाज्य नियमित हैं, और सभी प्रमुख प्रतिपादकों के लिए फर्मेट के प्रमेय की स्थापना की p 100 से कम, अनियमित अभाज्य संख्या 37 (संख्या), 59 (संख्या), और 67 (संख्या) को छोड़कर। बीसवीं सदी में इवासावा सिद्धांत में केनकिची इवासावा द्वारा और कुबोटा और लियोपोल्ड द्वारा p-adic zeta function|p-adic zeta function के अपने सिद्धांत में साइक्लोटॉमिक क्षेत्रों की कक्षा संख्याओं के लिए कुमेर का काम सामान्यीकृत किया गया था।
चक्रीय क्षेत्रों की वर्ग संख्याओं की सूची
(sequence A061653 in the OEIS), या OEIS: A055513 या OEIS: A000927 के लिए -पार्ट (प्राइम एन के लिए)
- 1-22: 1
- 23: 3
- 24-28: 1
- 29: 8
- 30: 1
- 31: 9
- 32-36: 1
- 37: 37
- 38: 1
- 39: 2
- 40: 1
- 41: 121
- 42: 1
- 43: 211
- 44: 1
- 45: 1
- 46: 3
- 47: 695
- 48: 1
- 49: 43
- 50: 1
- 51: 5
- 52: 3
- 53: 4889
- 54: 1
- 55: 10
- 56: 2
- 57: 9
- 58: 8
- 59: 41241
- 60: 1
- 61: 76301
- 62: 9
- 63: 7
- 64: 17
- 65: 64
- 66: 1
- 67: 853513
- 68: 8
- 69: 69
- 70: 1
- 71: 3882809
- 72: 3
- 73: 11957417
- 74: 37
- 75: 11
- 76: 19
- 77: 1280
- 78: 2
- 79: 100146415
- 80: 5
- 81: 2593
- 82: 121
- 83: 838216959
- 84: 1
- 85: 6205
- 86: 211
- 87: 1536
- 88: 55
- 89: 13379363737
- 90: 1
- 91: 53872
- 92: 201
- 93: 6795
- 94: 695
- 95: 107692
- 96: 9
- 97: 411322824001
- 98: 43
- 99: 2883
- 100: 55
- 101: 3547404378125
- 102: 5
- 103: 9069094643165
- 104: 351
- 105: 13
- 106: 4889
- 107: 63434933542623
- 108: 19
- 109: 161784800122409
- 110: 10
- 111: 480852
- 112: 468
- 113: 1612072001362952
- 114: 9
- 115: 44697909
- 116: 10752
- 117: 132678
- 118: 41241
- 119: 1238459625
- 120: 4
- 121: 12188792628211
- 122: 76301
- 123: 8425472
- 124: 45756
- 125: 57708445601
- 126: 7
- 127: 2604529186263992195
- 128: 359057
- 129: 37821539
- 130: 64
- 131: 28496379729272136525
- 132: 11
- 133: 157577452812
- 134: 853513
- 135: 75961
- 136: 111744
- 137: 646901570175200968153
- 138: 69
- 139: 1753848916484925681747
- 140: 39
- 141: 1257700495
- 142: 3882809
- 143: 36027143124175
- 144: 507
- 145: 1467250393088
- 146: 11957417
- 147: 5874617
- 148: 4827501
- 149: 687887859687174720123201
- 150: 11
- 151: 2333546653547742584439257
- 152: 1666737
- 153: 2416282880
- 154: 1280
- 155: 84473643916800
- 156: 156
- 157: 56234327700401832767069245
- 158: 100146415
- 159: 223233182255
- 160: 31365
यह भी देखें
- क्रोनकर-वेबर प्रमेय
- चक्रीय बहुपद
संदर्भ
- ↑ Washington 1997, Proposition 2.7.
- ↑ Washington 1997, Theorem 11.1.
स्रोत
- ब्रायन जॉन बिर्च, साइक्लोटोमिक फ़ील्ड्स और कुमेर एक्सटेंशन, J.W.S में। कैसल्स और ए. फ्रॉलिच (edd), बीजगणितीय संख्या सिद्धांत, अकादमिक प्रेस, 1973। चैप.III, पीपी। 45-93।
- डेनियल ए. मार्कस, नंबर फील्ड्स, पहला संस्करण, स्प्रिंगर-वेरलाग, 1977
- Washington, Lawrence C. (1997), Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83 (2 ed.), New York: Springer-Verlag, doi:10.1007/978-1-4612-1934-7, ISBN 0-387-94762-0, MR 1421575
- सर्ज लैंग, साइक्लोटॉमिक फील्ड I और II, संयुक्त दूसरा संस्करण। कार्ल रुबिन द्वारा परिशिष्ट के साथ। गणित में स्नातक ग्रंथ, 121। स्प्रिंगर-वर्लाग, न्यूयॉर्क, 1990। ISBN 0-387-96671-4
अग्रिम पठन
- Coates, John; Sujatha, R. (2006). Cyclotomic Fields and Zeta Values. Springer Monographs in Mathematics. Springer-Verlag. ISBN 3-540-33068-2. Zbl 1100.11002.
- Weisstein, Eric W. "Cyclotomic Field". MathWorld.
- "Cyclotomic field", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- On the Ring of Integers of Real Cyclotomic Fields. Koji Yamagata and Masakazu Yamagishi: Proc,Japan Academy, 92. Ser a (2016)