आमेनाएबल समूह

From Vigyanwiki
Revision as of 18:31, 14 February 2023 by alpha>Ashutoshyadav

गणित में, सहज अनुगामी समूह' एक स्थानीय रूप से संक्षिप्त संस्थानिक समूह 'G है जो बाध्य कार्यों पर एक प्रकार का औसत संचालन करता है और समूह तत्वों द्वारा परिवर्तन के अंतर्गत अपरिवर्तनीय होता है। मूल परिभाषा G के उप समुच्चय पर एक सूक्ष्म योगात्मक माप या माध्य माप के संदर्भ में 1929 में जॉन वॉन न्यूमैन द्वारा जर्मन भाषा के नाम "मेसबार" (अंग्रेजी में "मापने योग्य") के अंतर्गत बानाच-टार्स्की- पैराडॉक्स के संदर्भ में प्रस्तुत की गई थी। 1949 में महलोन एम. डे ने अंग्रेजी अनुवाद "अमीनाबल" को स्पष्ट रूप से "मीन" पर एक वाक्य के रूप में प्रस्तावित किया था।[lower-alpha 1]

सहज अनुगामी वित्त में बड़ी संख्या में समान योग होते हैं। गणितीय विश्लेषण के क्षेत्र में, परिभाषा रैखिक कार्यों के संदर्भ में होती है। इस संस्करण को समझने का एक सहज तरीका यह है कि नियमित प्रतिनिधित्व का समर्थन अलघुकरणीय अभिवेदन का संपूर्ण स्थान है। असतत समूह सिद्धांत में, जहाँ G के पास असतत टोपोलॉजी होती है जिसके लिए एक सरल परिभाषा का उपयोग किया जाता है। इस सेटिंग में, एक समूह अनुमन्य होता है यदि कोई यह कह सकता है कि किसी दिए गए उप समुच्चय में G का कितना अनुपात होता है।

यदि किसी समूह में एक फोल्नर अनुक्रम है तो यह स्वचालित रूप से सहज अनुगामी होता है।

स्थानीय रूप से संक्षिप्त समूहों के लिए परिभाषा

माना कि G एक स्थानीय रूप से संक्षिप्त हौसडॉर्फ समूह है। तब यह सर्वविदित होता है कि इसके पास एक अद्वितीय पैमाने तक बाएं या दाएं परिवर्तन मे अपरिवर्तनीय गैर तुच्छ वलय होता है जो "हार माप" को मापता है। यह एक बोरेल नियमित माप है जब G दूसरा गणनीय है। G संक्षिप्त के होने पर बाएं और दाएं दोनों माप हैं। बानाच समष्टि L(G) पर विचार करें कि इस माप समष्टि के भीतर अनिवार्य रूप से परिबद्ध मापनीय कार्यों (जो स्पष्ट रूप से "हार माप" के पैमाने से स्वतंत्र है) कि माप होती है।

परिभाषा 1. होम(L(G), R) में एक रैखिक कार्यात्मक Λ को माध्य कहा जाता है यदि Λ का मानदंड 1 और गैर-ऋणात्मक है अर्थात f ≥ 0 का अर्थ Λ(f) ≥ 0 होता है।

परिभाषा 2. होम(L(G), R) में एक माध्य Λ को बाएं-अपरिवर्तनीय (क्रमशः दाएं-अपरिवर्तनीय) कहा जाता है यदि Λ(g·f) = Λ(f) में सभी G के लिए और f में L(G) g·f(x) = f(g−1x) क्रमशः f·g(x) = f(xg−1) की बाईं (क्रमशः दाईं) शिफ्ट क्रिया के संबंध में होते है।

परिभाषा 3. स्थानीय रूप से संक्षिप्त हौसडॉर्फ समूह को संक्षिप्त सहज अनुगामी कहा जाता है यदि यह बाएं या दाएं अपरिवर्तनीय माध्य को स्वीकृत करता है।

अनुकूलता के लिए समतुल्य शर्तें

पियर (1984) में एक दूसरे गणनीय स्थानीय रूप से संक्षिप्त समूह G पर शर्तों का एक व्यापक विवरण शामिल है जो कि अनुकूलता के बराबर है:[2]

  • 'एल' पर एक बाएँ (या दाएँ) अपरिवर्तनीय माध्य का अस्तित्व(जी). मूल परिभाषा, जो पसंद के स्वयंसिद्ध पर निर्भर करती है।
  • 'वाम-अपरिवर्तनीय राज्यों का अस्तित्व।' G पर बंधे निरंतर कार्यों के किसी भी वियोज्य बाएं-इनवेरिएंट यूनिटल सी * -सुबलजेब्रा पर एक बाएं-अपरिवर्तनीय स्थिति है।
  • 'फिक्स्ड-पॉइंट प्रॉपर्टी।' (वियोज्य) स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस के उत्तल सेट पर निरंतर affine परिवर्तन द्वारा समूह की कोई भी कार्रवाई एक निश्चित बिंदु है। स्थानीय रूप से संक्षिप्त एबेलियन समूहों के लिए, यह संपत्ति मार्कोव-काकुटानी निश्चित-बिंदु प्रमेय के परिणामस्वरूप संतुष्ट है।
  • 'इर्रेड्युसिबल ड्यूल।' एल पर बाएं नियमित प्रतिनिधित्व λ में सभी अलघुकरणीय अभ्यावेदन कमजोर रूप से समाहित हैं2(जी).
  • 'तुच्छ प्रतिनिधित्व।' G का तुच्छ प्रतिनिधित्व बाएं नियमित प्रतिनिधित्व में कमजोर रूप से समाहित है।
  • 'भगवान की स्थिति।' G पर प्रत्येक बाध्य सकारात्मक-निश्चित माप μ μ (1) ≥ 0 को संतुष्ट करता है। वैलेट ने यह दिखाकर इस मानदंड में सुधार किया है कि यह पूछने के लिए पर्याप्त है कि, G पर प्रत्येक निरंतर सकारात्मक-निश्चित संक्षिप्त रूप से समर्थित फ़ंक्शन एफ के लिए, फ़ंक्शन Δf का हार माप के संबंध में गैर-नकारात्मक अभिन्न है, जहां Δ मॉड्यूलर फ़ंक्शन को दर्शाता है।[3]
  • दिन की स्पर्शोन्मुख व्युत्क्रम स्थिति। पूर्णांक गैर-नकारात्मक कार्यों φ का एक क्रम हैn G पर इंटीग्रल 1 के साथ ऐसा है कि λ(g)φn - चn एल पर कमजोर टोपोलॉजी में 0 की ओर जाता है1(जी).
  • 'रीटर की हालत।' G के प्रत्येक परिमित (या संक्षिप्त) उपसमुच्चय F के लिए एक पूर्णांक गैर-नकारात्मक फ़ंक्शन φ होता है जिसमें अभिन्न 1 होता है जैसे कि λ(g)φ - φ L में मनमाने ढंग से छोटा होता है1(G) F में g के लिए।
  • 'डिक्समियर की हालत।' G के प्रत्येक परिमित (या संहत) उपसमुच्चय F के लिए L में इकाई सदिश f होता है2(G) ऐसा है कि λ(g)f - f L में मनमाने ढंग से छोटा है2(G) F में g के लिए।
  • 'ग्लिक्सबर्ग−रीटर स्थिति।' एल में किसी भी एफ के लिए1(G), 0 और L में बंद उत्तल पतवार के बीच की दूरीबाएँ का 1(G) λ(g)f बराबर |∫f| का अनुवाद करता है।
  • 'Følner अनुक्रम|Følner हालत।' G के प्रत्येक परिमित (या संक्षिप्त) उपसमुच्चय F के लिए परिमित सकारात्मक हार माप के साथ G का एक औसत दर्जे का उपसमुच्चय होता है जैसे कि m(U Δ gU)/m(U) F में g के लिए मनमाने ढंग से छोटा होता है।
  • 'लेप्टिन की हालत।' G के प्रत्येक परिमित (या संक्षिप्त) उपसमुच्चय F के लिए परिमित धनात्मक Haar माप के साथ G का एक औसत दर्जे का उपसमुच्चय होता है जैसे कि m(FU Δ U)/m(U) मनमाने ढंग से छोटा होता है।
  • 'केस्टन की हालत'। एल पर वाम कनवल्शन2(G) G पर एक सममित संभाव्यता माप द्वारा ऑपरेटर मानदंड 1 का एक ऑपरेटर देता है।
  • 'जॉनसन की कोहोमोलॉजिकल स्थिति।' बनच बीजगणित ए = एल1(G) अनुगामी बनच बीजगणित है, यानी ए की कोई भी बाध्य व्युत्पत्ति बनच ए-बिमॉड्यूल के दोहरे में आंतरिक है।

असतत समूहों का मामला

असतत समूह के मामले में अनुकूलता की परिभाषा सरल है,[4] यानी असतत टोपोलॉजी से लैस समूह।[5] परिभाषा। एक असतत समूह G अनुमन्य है अगर वहाँ एक परिमित योगात्मक उपाय (गणित) (जिसे एक माध्य भी कहा जाता है) है - एक फ़ंक्शन जो G के प्रत्येक उपसमुच्चय को 0 से 1 तक की संख्या निर्दिष्ट करता है—जैसे कि

  1. माप एक प्रायिकता माप है: पूरे समूह G का माप 1 है।
  2. उपाय सूक्ष्म रूप से योज्य है: 'जी' के बहुत से असंयुक्त उपसमुच्चय दिए गए हैं, सेटों के मिलन का माप उपायों का योग है।
  3. माप वाम-अपरिवर्तनीय है: एक उपसमुच्चय A और G का एक तत्व g दिया गया है, A का माप gA के माप के बराबर है। (gA A में प्रत्येक तत्व a के लिए तत्वों के सेट ga को दर्शाता है। अर्थात, A के प्रत्येक तत्व का बाईं ओर अनुवाद किया जाता है जी।)

इस परिभाषा को इस प्रकार संक्षेपित किया जा सकता है: G उत्तरदायी है यदि इसमें एक परिमित-योगात्मक वाम-अपरिवर्तनीय संभाव्यता माप है। G के एक उपसमुच्चय A को देखते हुए, माप को प्रश्न का उत्तर देने के रूप में सोचा जा सकता है: क्या प्रायिकता है कि G का एक यादृच्छिक तत्व A में है?

यह एक तथ्य है कि यह परिभाषा L के संदर्भ में परिभाषा के समतुल्य है(जी).

G पर एक माप μ होने से हमें G पर परिबद्ध कार्यों के एकीकरण को परिभाषित करने की अनुमति मिलती है। एक परिबद्ध कार्य f: G → 'R', अभिन्न

Lebesgue एकीकरण के रूप में परिभाषित किया गया है। (ध्यान दें कि लेबेसेग एकीकरण के कुछ गुण यहां विफल हो जाते हैं, क्योंकि हमारा माप केवल सूक्ष्म रूप से योज्य है।)

यदि किसी समूह के पास वाम-अपरिवर्तनीय माप है, तो इसमें स्वचालित रूप से द्वि-अपरिवर्तनीय माप होता है। बाएं-अपरिवर्तनीय माप μ को देखते हुए, फ़ंक्शन μ(ए) = μ(ए-1) एक राइट-इनवेरिएंट माप है। इन दोनों के संयोजन से द्वि-अपरिवर्तनीय माप प्राप्त होता है:

गणनीय असतत समूह Γ के मामले में अनुकूलता के लिए समतुल्य शर्तें भी सरल हो जाती हैं। ऐसे समूह के लिए निम्नलिखित शर्तें समतुल्य हैं:[2]

  • Γ उत्तरदायी है।
  • यदि Γ एक (वियोज्य) बैनच स्पेस ई पर आइसोमेट्री द्वारा कार्य करता है, तो ई * इनवेरिएंट की बंद इकाई गेंद के कमजोर बंद उत्तल उपसमुच्चय सी को छोड़कर, Γ का सी में एक निश्चित बिंदु है।
  • ℓ पर एक बाएं अपरिवर्तनीय मानक-निरंतर कार्यात्मक μ है(Γ) μ(1) = 1 के साथ (इसके लिए पसंद के स्वयंसिद्ध की आवश्यकता है)।
  • किसी भी बाएं अपरिवर्तनीय वियोज्य यूनिटल C*-बीजगणित|C*-subalgebra of ℓ पर एक बायाँ अपरिवर्तनीय C*-बीजगणित μ है(Γ).
  • संभाव्यता उपायों का एक सेट है μn Γ पर ऐसा कि ||g · μn- मn||1 Γ (एमएम डे) में प्रत्येक G के लिए 0 हो जाता है।
  • यूनिट वैक्टर x हैंnℓ में2(Γ) ऐसा कि ||g · xn- एक्सn||2 Γ (J. Dixmier) में प्रत्येक g के लिए 0 हो जाता है।
  • परिमित उपसमुच्चय S हैंnΓ का ऐसा है कि |g · Snडी एसn| / |एसn| Γ (Følner) में प्रत्येक g के लिए 0 हो जाता है।
  • यदि μ Γ पर एक सममित संभाव्यता माप है जो Γ उत्पन्न करने के समर्थन के साथ है, तो μ द्वारा कनवल्शन ℓ पर मानदंड 1 के एक ऑपरेटर को परिभाषित करता है2(Γ) (केस्टेन)।
  • यदि Γ isometrics द्वारा एक (वियोज्य) Banach स्थान E और f पर कार्य करता है ℓ(Γ, E*) एक बाउंडेड 1-चक्र है, यानी f(gh) = f(g) + g·f(h), तो f एक 1-कोबाउंडरी है, यानी f(g) = g·φ − φ ई* में कुछ φ के लिए (बी.ई. जॉनसन)।
  • C*-बीजगणित|घटाया हुआ समूह C*-बीजगणितr*(G)) परमाणु C*-बीजगणित है।
  • सी*-बीजगणित|कम किया हुआ समूह सी*-बीजगणित क्वासिडियागोनल है (जे. रोसेनबर्ग, ए. टिकुइसिस, एस. व्हाइट, डब्ल्यू. विंटर)।
  • Γ का वॉन न्यूमैन बीजगणित (स्थानीय संक्षिप्त समूह का समूह बीजगणित देखें #वॉन न्यूमैन बीजगणित समूहों से जुड़ा हुआ है) वॉन न्यूमैन बीजगणित # एमनेबल वॉन न्यूमैन बीजगणित (ए कोन्स) है।

ध्यान दें कि ए. कॉन्स ने यह भी साबित किया है कि किसी भी जुड़े हुए स्थानीय रूप से संक्षिप्त समूह का वॉन न्यूमैन समूह बीजगणित वॉन न्यूमैन बीजगणित#Amenable वॉन न्यूमैन बीजगणित है, इसलिए जुड़े समूहों के मामले में अब अंतिम स्थिति लागू नहीं होती है।

उत्तरदायित्व कुछ ऑपरेटरों के वर्णक्रमीय सिद्धांत से संबंधित है। उदाहरण के लिए, एक बंद रिमेंनियन मैनिफोल्ड का मौलिक समूह अनुमन्य है अगर और केवल अगर मैनिफोल्ड के सार्वभौमिक कवर के एल L2-अंतरिक्ष पर लाप्लास-बेल्ट्रामी ऑपरेटर के स्पेक्ट्रम के नीचे 0 है।[6]


गुण

  • अनुमन्य समूह का प्रत्येक (बंद) उपसमूह अनुमन्य है।
  • अनुमन्य समूह का प्रत्येक भाग अनुमन्य है।
  • एक अनुमन्य समूह द्वारा एक अनुमन्य समूह का एक समूह विस्तार फिर से अनुमन्य है। विशेष रूप से, अनुमन्य समूहों के समूहों के परिमित प्रत्यक्ष उत्पाद अनुमन्य हैं, हालांकि अनंत उत्पादों की आवश्यकता नहीं है।
  • अनुमन्य समूहों की प्रत्यक्ष सीमाएं अनुमन्य हैं। विशेष रूप से, यदि एक समूह को उत्तरदायी उपसमूहों के निर्देशित संघ के रूप में लिखा जा सकता है, तो यह अनुमन्य है।
  • उत्तरदायी समूह समान रूप से बंधे हुए प्रतिनिधित्व हैं; बातचीत एक खुली समस्या है।
  • गणनीय असतत अनुगामी समूह ऑर्नस्टीन समरूपता प्रमेय का पालन करते हैं।[7][8]


उदाहरण

  • परिमित समूह उत्तरदायी हैं। असतत परिभाषा के साथ मतगणना माप का उपयोग करें। अधिक आम तौर पर, संक्षिप्त जगह समूह उत्तरदायी होते हैं। हार माप एक अपरिवर्तनीय माध्य (कुल माप 1 लेने वाला अद्वितीय) है।
  • पूर्णांकों का समूह अनुमन्य है (अनंत की ओर जाने वाले अंतरालों का एक अनुक्रम एक फोल्नर अनुक्रम है)। समूह Z पर शिफ्ट-इनवेरिएंट, परिमित योगात्मक संभाव्यता माप का अस्तित्व भी हन-बनच प्रमेय से आसानी से अनुसरण करता है। बता दें कि S सीक्वेंस स्पेस #ℓp स्पेस ℓ पर शिफ्ट ऑपरेटर है(Z), जिसे (Sx) द्वारा परिभाषित किया गया हैi= एक्सi+1 सभी के लिए x ∈ ℓ(Z), और चलो u ∈ (Z) निरंतर अनुक्रम हो ui= सभी i ∈ 'Z' के लिए 1। कोई भी तत्व y ∈ Y:=रेंज(S − I) की दूरी u से 1 से अधिक या उसके बराबर है (अन्यथा yi= एक्सi+1- एक्सiधनात्मक होगा और शून्य से दूर होगा, जहां से xiबाँधा नहीं जा सकता)। इसका अर्थ है कि उप-स्थान 'R'u'+' Y पर tu +y से t तक ले जाने पर एक अच्छी तरह से परिभाषित मानक-एक रेखीय रूप है। हान-बनच प्रमेय द्वारा उत्तरार्द्ध ℓ पर एक मानक-एक रैखिक विस्तार को स्वीकार करता है(Z), जो कि Z पर एक शिफ्ट-इनवेरिएंट फ़ाइनली एडिटिव प्रायिकता माप का निर्माण करके है।
  • यदि स्थानीय रूप से संक्षिप्त समूह में प्रत्येक संयुग्मन वर्ग का संक्षिप्त क्लोजर है, तो समूह उत्तरदायी है। इस संपत्ति वाले समूहों के उदाहरणों में संक्षिप्त समूह, स्थानीय रूप से संक्षिप्त एबेलियन समूह और एफसी-समूह शामिल हैं।[9]
  • उपरोक्त प्रत्यक्ष सीमा संपत्ति के अनुसार, एक समूह अनुमन्य है यदि उसके सभी सूक्ष्म रूप से उत्पन्न समूह उपसमूह हैं। अर्थात्, स्थानीय रूप से अनुकूल समूह उत्तरदायी हैं।
    • अंतिम रूप से उत्पन्न एबेलियन समूहों के मौलिक प्रमेय द्वारा, यह अनुसरण करता है कि एबेलियन समूह उत्तरदायी हैं।
  • उपरोक्त विस्तार संपत्ति से यह अनुसरण करता है कि एक समूह अनुगामी है यदि उसके पास एक उपसमूह अनुगामी उपसमूह का एक परिमित सूचकांक है। अर्थात्, वस्तुत: अनुमन्य समूह अनुमन्य होते हैं।
  • इसके अलावा, यह इस प्रकार है कि सभी हल करने योग्य समूह उत्तरदायी हैं।

उपरोक्त सभी उदाहरण प्राथमिक अनुकूल समूह हैं। ग्रिगोरचुक समूह के समूहों के अस्तित्व के लिए धन्यवाद, गैर-प्राथमिक उत्तरदायी उदाहरणों को प्रदर्शित करने के लिए नीचे दिए गए उदाहरणों की पहली श्रेणी का उपयोग किया जा सकता है।

  • विकास दर (समूह सिद्धांत) के अंतिम रूप से उत्पन्न समूह उत्तरदायी हैं। गेंदों का एक उपयुक्त क्रम एक फोल्नर अनुक्रम प्रदान करेगा।[10]
  • सूक्ष्म रूप से उत्पन्न अनंत सरल समूह बूटस्ट्रैप निर्माणों द्वारा प्राप्त नहीं किए जा सकते हैं, जैसा कि प्राथमिक अनुमन्य समूहों के निर्माण के लिए उपयोग किया जाता है। चूंकि जुशचेंको और निकोलस मोनोड के कारण ऐसे सरल समूह मौजूद हैं जो उत्तरदायी हैं,[11] यह फिर से गैर-प्राथमिक अनुकूल उदाहरण प्रदान करता है।

गैर-उदाहरण

यदि एक गणनीय असतत समूह में दो जनरेटर पर एक (गैर-अबेलियन) मुक्त उपसमूह होता है, तो यह उत्तरदायी नहीं है। इस कथन का विलोम तथाकथित वॉन न्यूमैन अनुमान है, जिसे 1980 में ओलशनस्की ने अपने तर्स्की राक्षसों का उपयोग करके अस्वीकृत कर दिया था। Adyan ने बाद में दिखाया कि मुक्त बर्नसाइड समूह समूह गैर-प्रतिगामी हैं: चूंकि वे आवधिक समूह हैं, वे दो जनरेटर पर मुक्त समूह को शामिल नहीं कर सकते। ये समूह सूक्ष्म रूप से उत्पन्न होते हैं, लेकिन अंतिम रूप से प्रस्तुत नहीं किए जाते हैं। हालांकि, 2002 में सपिर और ओलशनस्की ने सूक्ष्म रूप से प्रस्तुत किए गए प्रति-उदाहरण पाए: गैर-प्रतिशोधी सूक्ष्म रूप से प्रस्तुत किए गए समूह जिनमें भागफल पूर्णांक के साथ एक आवधिक सामान्य उपसमूह होता है।[12]

अंतिम रूप से उत्पन्न रैखिक समूहों के लिए, हालांकि, वॉन न्यूमैन अनुमान स्तन विकल्प द्वारा सत्य है:[13] GL(n,k) के प्रत्येक उपसमूह के क्षेत्र के साथ या तो परिमित सूचकांक का एक सामान्य हल करने योग्य उपसमूह है (और इसलिए उत्तरदायी है) या दो जनरेटर पर मुफ्त समूह शामिल है। हालांकि जैक्स स्तन टिट्स के प्रमाण में बीजगणितीय ज्यामिति का उपयोग किया गया था, गिवार्क'ह ने बाद में वी. ओसेलेडेट्स के गुणात्मक एर्गोडिक प्रमेय पर आधारित एक विश्लेषणात्मक प्रमाण प्राप्त हुआ।[14] जैसे कि गैर-धनात्मक वक्रता के 2-आयामी साधारण परिसरों के मौलिक समूह के कई अन्य वर्गों के लिए स्तन विकल्प के अनुरूप सिद्ध हुए हैं।[15]

यह भी देखें

  • समान रूप से बाध्य प्रतिनिधित्व
  • कज़दान की संपत्ति (टी)
  • वॉन न्यूमैन अनुमान

टिप्पणियाँ

  1. Day's first published use of the word is in his abstract for an AMS summer meeting in 1949.[1] Many textbooks on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.

उद्धरण

  1. Day 1949, pp. 1054–1055.
  2. 2.0 2.1 Pier 1984.
  3. Valette 1998.
  4. See:
  5. Weisstein, Eric W. "Discrete Group". MathWorld.
  6. Brooks 1981, pp. 581–598.
  7. Ornstein & Weiss 1987, pp. 1–141.
  8. Bowen 2012.
  9. Leptin 1968.
  10. See:
  11. Juschenko & Monod 2013, pp. 775–787.
  12. Olshanskii & Sapir 2002, pp. 43–169.
  13. Tits 1972, pp. 250–270.
  14. Guivarc'h 1990, pp. 483–512.
  15. Ballmann & Brin 1995, pp. 169–209.

स्रोत

This article incorporates material from Amenable group on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


बाहरी संबंध