पैरेटो फ्रंट
बहुउद्देश्यीय अनुकूलन में, पैरेटो फ्रंट सभी पारेटो कुशल समाधानों का समुच्चय है।[1] इसे व्यापक रूप से अभियांत्रिकी में उपयोग किया जाता है।[2]: 111–148 यह प्रारूपो को प्रत्येक पैरामीटर की पूरी श्रृंखला पर विचार करने के अतिरक्त कुशल विकल्पों के समुच्चय पर ध्यान केंद्रित करने और इस समुच्चय के अंदर व्यापार-बंद करने की अनुमति देता है।[3]: 63–65 [4]: 399–412
परिभाषा
पेरेटो फ्रंटियर, पी (वाई), को अधिक औपचारिक रूप से निम्नानुसार वर्णित किया जा सकता है। कार्य के साथ एक प्रणाली पर विचार करें , जहाँ X मीट्रिक स्थान में व्यवहार्य निर्णयों का एक कॉम्पैक्ट जगह है , और Y में कसौटी सदिश का व्यवहार्य समुच्चय है , ऐसा है कि .
हम मानते हैं कि मापदंड मानों की पसंदीदा दिशाएँ ज्ञात हैं। एक बिंदु एक और बिंदु के लिए (सख्ती से हावी) पसंद किया जाता है , के रूप में लिखा गया है . पेरेटो सीमांत इस प्रकार लिखा गया है:
प्रतिस्थापन की सीमांत दर
अर्थशास्त्र में पैरेटो फ्रंटियर का एक महत्वपूर्ण दृष्टीकोण यह है कि पारेतो-कुशल आवंटन पर, प्रतिस्थापन की सीमांत दर सभी उपभोक्ताओं के लिए समान होती है।[5] एम उपभोक्ताओं और एन वस्तुओं के साथ एक प्रणाली और प्रत्येक उपभोक्ता के उपयोगिता समारोह के रूप में विचार करके एक औपचारिक बयान प्राप्त किया जा सकता है जहां , सभी के लिए मान सदिश है,जो सभी के लिए व्यवहार्यता बाधा है के लिए . पेरेटो इष्टतम आवंटन खोजने के लिए, हम लैग्रैंगियन यांत्रिकी को अधिकतम प्रयोग करते हैं:
जहाँ और गुणक के सदिश हैं। प्रत्येक अच्छे संबंध में लैग्रैंगियन का आंशिक व्युत्पन्न लेना के लिए और और प्रथम-क्रम स्थितियों की निम्नलिखित प्रणाली देता है:
जहाँ के आंशिक व्युत्पन्न को दर्शाता है इसके संबंध में . अब, कोई भी ठीक करें और . उपरोक्त प्रथम-क्रम की स्थिति का अर्थ है
इस प्रकार, पारेतो-इष्टतम आवंटन में, प्रतिस्थापन की सीमांत दर सभी उपभोक्ताओं के लिए समान होनी चाहिए।[citation needed]
गणना
कंप्यूटर विज्ञान और पावर अभियांत्रिकी में विकल्पों के एक सीमित समुच्चय के पैरेटो फ्रंटियर की गणना के लिए कलन विधि का अध्ययन किया गया है।[6]
- अधिकतम वेक्टर समस्या या स्काईलाइन ऑपरेटर।[7][8][9]
- स्केलराइजेशन एल्गोरिदम या भारित रकम की विधि।[10][11]
- वें>-प्रतिबंध विधि।[12][13]
अनुमान
चूंकि पूरे पारेटो फ्रंट को उत्पन्न करना अक्सर कम्प्यूटेशनल रूप से कठिन होता है, एक अनुमानित पारेटो-फ्रंट की गणना के लिए एल्गोरिदम होते हैं। उदाहरण के लिए, लेग्रियल एट अल।[14] एक समुच्चय S को परेटो-फ्रंट P का 'ε-सन्निकटन' कहते हैं, यदि S और P के बीच हॉसडॉर्फ की निर्देशित दूरी अधिक से अधिक ε है। वे देखते हैं कि d आयामों में किसी भी पेरेटो फ्रंट P का ε-अनुमानन (1/ε) का उपयोग करके पाया जा सकता है।d प्रश्न।
Zitzler, नोल्स और थिएले[15] विभिन्न मानदंडों पर पारेटो- समुच्चय सन्निकटन के लिए कई एल्गोरिदम की तुलना करें, जैसे स्केलिंग, मोनोटोनिसिटी और कम्प्यूटेशनल जटिलता के लिए व्युत्क्रम।
संदर्भ
- ↑ proximedia. "Pareto Front". www.cenaero.be. Retrieved 2018-10-08.
- ↑ Goodarzi, E., Ziaei, M., & Hosseinipour, E. Z., Introduction to Optimization Analysis in Hydrosystem Engineering (Berlin/Heidelberg: Springer, 2014), pp. 111–148.
- ↑ Jahan, A., Edwards, K. L., & Bahraminasab, M., Multi-criteria Decision Analysis, 2nd ed. (Amsterdam: Elsevier, 2013), pp. 63–65.
- ↑ Costa, N. R., & Lourenço, J. A., "Exploring Pareto Frontiers in the Response Surface Methodology", in G.-C. Yang, S.-I. Ao, & L. Gelman, eds., Transactions on Engineering Technologies: World Congress on Engineering 2014 (Berlin/Heidelberg: Springer, 2015), pp. 399–412.
- ↑ Just, Richard E. (2004). The welfare economics of public policy : a practical approach to project and policy evaluation. Hueth, Darrell L., Schmitz, Andrew. Cheltenham, UK: E. Elgar. pp. 18–21. ISBN 1-84542-157-4. OCLC 58538348.
- ↑ Tomoiagă, Bogdan; Chindriş, Mircea; Sumper, Andreas; Sudria-Andreu, Antoni; Villafafila-Robles, Roberto (2013). "Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II". Energies. 6 (3): 1439–55. doi:10.3390/en6031439.
- ↑ Nielsen, Frank (1996). "Output-sensitive peeling of convex and maximal layers". Information Processing Letters. 59 (5): 255–9. CiteSeerX 10.1.1.259.1042. doi:10.1016/0020-0190(96)00116-0.
- ↑ Kung, H. T.; Luccio, F.; Preparata, F.P. (1975). "On finding the maxima of a set of vectors". Journal of the ACM. 22 (4): 469–76. doi:10.1145/321906.321910. S2CID 2698043.
- ↑ Godfrey, P.; Shipley, R.; Gryz, J. (2006). "Algorithms and Analyses for Maximal Vector Computation". VLDB Journal. 16: 5–28. CiteSeerX 10.1.1.73.6344. doi:10.1007/s00778-006-0029-7. S2CID 7374749.
- ↑ Kim, I. Y.; de Weck, O. L. (2005). "Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation". Structural and Multidisciplinary Optimization. 31 (2): 105–116. doi:10.1007/s00158-005-0557-6. ISSN 1615-147X. S2CID 18237050.
- ↑ Marler, R. Timothy; Arora, Jasbir S. (2009). "The weighted sum method for multi-objective optimization: new insights". Structural and Multidisciplinary Optimization. 41 (6): 853–862. doi:10.1007/s00158-009-0460-7. ISSN 1615-147X. S2CID 122325484.
- ↑ "On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization". IEEE Transactions on Systems, Man, and Cybernetics. SMC-1 (3): 296–297. 1971. doi:10.1109/TSMC.1971.4308298. ISSN 0018-9472.
- ↑ Mavrotas, George (2009). "Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems". Applied Mathematics and Computation. 213 (2): 455–465. doi:10.1016/j.amc.2009.03.037. ISSN 0096-3003.
- ↑ Legriel, Julien; Le Guernic, Colas; Cotton, Scott; Maler, Oded (2010). Esparza, Javier; Majumdar, Rupak (eds.). "Approximating the Pareto Front of Multi-criteria Optimization Problems". Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science (in English). Berlin, Heidelberg: Springer. 6015: 69–83. doi:10.1007/978-3-642-12002-2_6. ISBN 978-3-642-12002-2.
- ↑ Zitzler, Eckart; Knowles, Joshua; Thiele, Lothar (2008), Branke, Jürgen; Deb, Kalyanmoy; Miettinen, Kaisa; Słowiński, Roman (eds.), "Quality Assessment of Pareto Set Approximations", Multiobjective Optimization: Interactive and Evolutionary Approaches, Lecture Notes in Computer Science (in English), Berlin, Heidelberg: Springer, pp. 373–404, doi:10.1007/978-3-540-88908-3_14, ISBN 978-3-540-88908-3, retrieved 2021-10-08
बाहरी संबंध
- Code to compute the Pareto front of a finite set of points in Julia: https://github.com/cossio/ParetoEfficiency.jl.