समीकरण

From Vigyanwiki

समीकरण बनाना

किसी भी प्रकार के समीकरण के वास्तविक समाधान की ओर बढ़ने से पहले, इसे हल के लिए तैयार करने के लिए कुछ प्रारंभिक संक्रियाओं को करना आवश्यक है।

अभी भी अधिक प्रारंभिक कार्य प्रस्तावित समस्या की स्थितियों से समीकरण (सामी-करण, सामी-कारा या सामी-क्रिया; समा, बराबर और कु से करना; इसलिए शाब्दिक रूप से, समान बनाना) बनाने का है। इस तरह के प्रारंभिक कार्य के लिए बीजगणित या अंकगणित के एक या एक से अधिक मौलिक संचालन के आवेदन की आवश्यकता हो सकती है।

भास्कर द्वितीय कहते हैं: "यावत-तावत को अज्ञात मात्रा के मूल्य के रूप में माना जाता है। फिर जैसा कि विशेष रूप से बताया गया है-एक समीकरण के दो बराबर पक्षों को घटाना, जोड़ना, गुणा करना या विभाजित करना बहुत सावधानी से बनाया जाना चाहिए।

बीजीय संकेतन

  • अज्ञात संख्याओं के लिए उपयोग किए जाने वाले प्रतीकों में यस्वत-तस्वत् (जितना जितना हो) के प्रारंभिक शब्दांश, कासलका (काला) का कश, नलका (नीला) का नंबर, पुत (पीला) आदि का पु शामिल है।
  • दो अज्ञातों के गुणनफल को उनके बाद रखे भाविता (उत्पाद) के प्रारंभिक शब्दांश भा द्वारा दर्शाया जाता है। शक्तियों को वर्गा (वर्ग), घाना के घ (घन) के प्रारंभिक अक्षरों वा द्वारा दर्शाया गया है; वावा का मतलब वर्गवर्ग, चौथी शक्ति है। कभी-कभी घट (उत्पाद) का प्रारंभिक शब्दांश घा शक्तियों के योग के लिए होता है।
  • प्रतीक के बगल में एक गुणांक रखा गया है। अचर पद को rūpa (रूप) के प्रारंभिक प्रतीक rū द्वारा निरूपित किया जाता है।
  • ऋणात्मक पूर्णांक के ऊपर एक बिंदु रखा गया है
  • एक समीकरण के दो पक्षों को एक दूसरे के नीचे रखा जाता है। इस प्रकार समीकरण X4 - 2X2 - 400x = 9999; के रूप में लिखा गया है

यावव 1 याव 2● या 400● 0

यावव 0 याव 0 या रू 9999

जिसका अर्थ है या के लिए x लिखना

x4 -2x2 -400x+0 = 0x4 +0x2+0x+9999

यदि कई अज्ञात हैं, तो एक ही तरह के लोगों को एक ही कॉलम में शून्य गुणांक के साथ लिखा जाता है, यदि आवश्यक हो। इस प्रकार समीकरण

197x - 1644y - z = 6302 द्वारा दर्शाया गया है

या 197 का 1644● नी 1● रु 0

या 0 का 0 नी 0 रु 6302

जिसका अर्थ है, k के लिए y और ni . के लिए z डालना

197x - 1644y - z + 0 = 0x + 0y + 0z + 6302।

भास्कर द्वितीय कहते हैं:

"फिर इसके एक तरफ अज्ञात (समीकरण) को दूसरी तरफ अज्ञात से घटाया जाना चाहिए, इसी तरह अज्ञात के वर्ग और अन्य शक्तियां भी;

दूसरी तरफ की ज्ञात मात्राओं को दूसरी तरफ की ज्ञात मात्राओं से घटाया जाना चाहिए।"

निम्नलिखित दृष्टांत भास्कर II के बीजगणित से है:

"इस प्रकार दोनों पक्ष हैं

हां 4 या 34● रु 72

हां वा 0 या 0 रु 90

पूर्ण समाशोधन (समाशोधन) पर, दोनों पक्षों के अवशेष हैं

या वा 4 या 34● रु 0

हां वा 0 या 0 रु 18

यानी, 4x2 -34x= 18

समीकरणों का वर्गीकरण