रेखा निर्देशांक
ज्यामिति में रेखा निर्देशांक का उपयोग रेखा (ज्यामिति) की स्थिति को निर्दिष्ट करने के लिए किया जाता है, जैसे बिंदु निर्देशांक (समन्वय प्रणाली) का उपयोग बिंदु की स्थिति को निर्दिष्ट करने के लिए किया जाता है।
विमान में रेखाएँ
समतल में एक रेखा की स्थिति निर्दिष्ट करने के कई संभावित तरीके हैं। जोड़ी द्वारा एक आसान तरीका है (m, b) जहाँ रेखा का समीकरण y = mx + b है। यहाँ m ढलान है और b y- अवरोधन है। यह प्रणाली उन सभी पंक्तियों के लिए निर्देशांक निर्दिष्ट करती है जो लंबवत नहीं हैं। हालांकि बीजगणितीय रूप से निर्देशांक (l, m) का उपयोग करना अधिक सामान्य और सरल है जहां रेखा का समीकरण lx + my + 1 = 0 है। यह प्रणाली उन रेखाओं को छोड़कर सभी रेखाओं के लिए निर्देशांक निर्दिष्ट करती है जो मूल से गुजरती हैं l l और m की ज्यामितीय व्याख्याएँ क्रमशः x और y-अवरोधन के नकारात्मक व्युत्क्रम हैं।
मूल से गुजरने वाली रेखाओं के बहिष्करण को तीन निर्देशांकों की प्रणाली का उपयोग करके हल किया जा सकता है (l, m, n) समीकरण lx + my + n = 0 के साथ रेखा निर्दिष्ट करने के लिए। यहां l और m दोनों 0 नहीं हो सकते हैं। इस समीकरण में केवल l, m और n के बीच के अनुपात महत्वपूर्ण हैं, दूसरे शब्दों में यदि निर्देशांकों को एक गैर-शून्य स्केलर से गुणा किया जाता है तो प्रतिनिधित्व की गई रेखा समान रहती है। इसलिए (l, m, n) रेखा के लिए सजातीय निर्देशांक की एक प्रणाली है।
यदि वास्तविक प्रक्षेप्य तल में बिंदुओं को सजातीय निर्देशांक द्वारा दर्शाया गया है (x, y, z), रेखा का समीकरण lx + my + nz = 0 है, बशर्ते (l, m, n) ≠ (0,0,0) . विशेष रूप से, रेखा समन्वय (0, 0, 1) रेखा z = 0 का प्रतिनिधित्व करता है, जो प्रक्षेपी तल में अनंत पर रेखा है। रेखा निर्देशांक (0, 1, 0) और (1, 0, 0) क्रमशः x और y-अक्षों का प्रतिनिधित्व करते हैं।
स्पर्शरेखा समीकरण
जिस तरह f(x, y) = 0 समतल में बिंदुओं के उपसमुच्चय के रूप में एक वक्र का प्रतिनिधित्व कर सकता है, समीकरण φ(l, m) = 0 समतल पर रेखाओं के एक उपसमुच्चय का प्रतिनिधित्व करता है। समतल पर रेखाओं के समुच्चय को एक अमूर्त अर्थ में, प्रक्षेपी तल में बिंदुओं के समुच्चय के रूप में सोचा जा सकता है, मूल तल का द्वैत (प्रोजेक्टिव ज्यामिति)। समीकरण φ(l, m) = 0 फिर दोहरे तल में एक वक्र का प्रतिनिधित्व करता है।
समतल में एक वक्र f(x, y) = 0 के लिए, वक्र की स्पर्श रेखाएँ दोहरे स्थान में एक वक्र बनाती हैं जिसे दोहरा वक्र कहा जाता है। अगर φ(l, m) = 0 दोहरे वक्र का समीकरण है, तो इसे मूल वक्र के लिए 'स्पर्शरेखा समीकरण' कहा जाता है। एक दिया गया समीकरण φ(l, m) = 0 मूल तल में एक वक्र का प्रतिनिधित्व करता है जो इस समीकरण को संतुष्ट करने वाली रेखाओं के लिफाफे (गणित) के रूप में निर्धारित होता है। इसी तरह, अगर φ(l, m, n) एक समरूप फलन है तो φ(l, m, n) = 0 सजातीय निर्देशांक में दी गई दोहरी जगह में एक वक्र का प्रतिनिधित्व करता है, और इसे आच्छादित वक्र का सजातीय स्पर्शरेखा समीकरण कहा जा सकता है .
लिफाफों के रूप में परिभाषित वक्रों के अध्ययन में स्पर्शरेखा समीकरण उपयोगी होते हैं, ठीक वैसे ही जैसे कार्तीय समीकरण लोकी के रूप में परिभाषित वक्रों के अध्ययन में उपयोगी होते हैं।
एक बिंदु का स्पर्शरेखा समीकरण
रेखा निर्देशांकों में एक रेखीय समीकरण का रूप अल + बीएम + सी = 0 होता है, जहां ए, बी और सी स्थिरांक होते हैं। मान लीजिए (l, m) एक रेखा है जो इस समीकरण को संतुष्ट करती है। यदि c 0 नहीं है तो lx + my + 1 = 0, जहाँ x = a/c और y = b/c, इसलिए मूल समीकरण को संतुष्ट करने वाली प्रत्येक पंक्ति बिंदु (x, y) से होकर गुजरती है। इसके विपरीत, (x, y) से होकर जाने वाली कोई भी रेखा मूल समीकरण को संतुष्ट करती है, इसलिए al + bm + c = 0 (x, y) से होकर जाने वाली रेखाओं के समुच्चय का समीकरण है। किसी दिए गए बिंदु (x, y) के लिए, रेखाओं के समुच्चय का समीकरण हालांकि यह lx + my + 1 = 0 है, इसलिए इसे बिंदु के स्पर्शरेखा समीकरण के रूप में परिभाषित किया जा सकता है। इसी तरह, सजातीय निर्देशांक में दिए गए बिंदु (x, y, z) के लिए, सजातीय स्पर्शरेखा निर्देशांक में बिंदु का समीकरण lx + my + nz =0 है।
सूत्र
लाइनों का चौराहा (एल1, एम1) और मैं2, एम2) रैखिक समीकरणों का हल है
क्रैमर के नियम से समाधान है
रेखाएँ (एल1, एम1), (एल2, एम2), और मैं3, एम3) समवर्ती रेखाएँ हैं जब निर्धारक
सजातीय निर्देशांक के लिए, रेखाओं का प्रतिच्छेदन (l1, एम1, एन1) और मैं2, एम2, एन2) है
रेखाएँ (एल1, एम1, एन1), (एल2, एम2, एन2) और मैं3, एम3, एन3) समवर्ती रेखाएँ हैं जब निर्धारक
दोहरे रूप से, युक्त रेखा के निर्देशांक (x1, और1, साथ1) और (एक्स2, और2, साथ2) हैं
त्रि-आयामी अंतरिक्ष में रेखाएँ
वास्तविक प्रक्षेपी तल में दिए गए दो बिंदुओं के लिए, (x1, और1, साथ1) और (एक्स2, और2, साथ2), तीन निर्धारक
उन्हें युक्त प्रक्षेपण रेखा निर्धारित करें।
इसी तरह, आरपी में दो बिंदुओं के लिए3</सुप>, (एक्स1, और1, साथ1, में1) और (एक्स2, और2, साथ2, में2), उन्हें शामिल करने वाली रेखा छह निर्धारकों द्वारा निर्धारित की जाती है
यह त्रि-आयामी अंतरिक्ष में सजातीय रेखा निर्देशांक की एक प्रणाली का आधार है जिसे प्लकर निर्देशांक कहा जाता है। निर्देशांक के एक सेट में छह संख्याएं केवल एक रेखा का प्रतिनिधित्व करती हैं, जब वे एक अतिरिक्त समीकरण को संतुष्ट करते हैं। यह प्रणाली त्रि-आयामी अंतरिक्ष में रेखाओं के स्थान को प्रक्षेपण स्थान 'RP' में मैप करती है।5, लेकिन अतिरिक्त आवश्यकता के साथ लाइनों का स्थान क्लेन क्वाड्रिक से मेल खाता है, जो कि आयाम चार का कई गुना है।
अधिक आम तौर पर, एन-डायमेंशनल प्रोजेक्टिव स्पेस में लाइनें n(n − 1)/2 सजातीय निर्देशांक की एक प्रणाली द्वारा निर्धारित की जाती हैं जो (n − 2)(n − 3)/2 शर्तों के एक सेट को संतुष्ट करती हैं, जिसके परिणामस्वरूप कई गुना होता है आयाम का 2n− 2.
जटिल संख्या के साथ
इसहाक याग्लोम ने दिखाया है[1] कैसे दोहरे नंबर यूक्लिडियन प्लेन में ओरिएंटेड लाइनों के लिए निर्देशांक प्रदान करते हैं, और विभाजित-जटिल संख्याएं अतिशयोक्तिपूर्ण विमान के लिए लाइन निर्देशांक बनाती हैं। निर्देशांक उस पर मूल और संदर्भ रेखा की उपस्थिति पर निर्भर करते हैं। फिर, एक मनमानी रेखा दी गई है, इसके निर्देशांक चौराहे से संदर्भ रेखा के साथ पाए जाते हैं। मूल से चौराहे तक की दूरी और दो रेखाओं के बीच झुकाव के कोण θ का उपयोग किया जाता है:
- द्वैत संख्या है[1]: 81 एक यूक्लिडियन रेखा के लिए, और
- विभाजित जटिल संख्या है[1]: 118 लोबाचेव्स्की विमान में एक लाइन के लिए।
चूंकि लोबाचेव्स्की विमान में संदर्भ रेखा के समानांतर रेखाएँ हैं, उन्हें निर्देशांक की भी आवश्यकता है: एक अद्वितीय अल्ट्रापैरेलल प्रमेय है, कहते हैं कि s मूल से इस लंब की दूरी है, और d संदर्भ और संदर्भ के बीच खंड की लंबाई है दी गई रेखा।
- अल्ट्रापैरेलल लाइन को दर्शाता है।[1]: 118
लाइन ज्यामिति की गतियों को उपयुक्त जटिल विमानों पर रैखिक भिन्नात्मक परिवर्तनों के साथ वर्णित किया गया है।[1]: 87, 123
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 Isaak Yaglom (1968) Complex Numbers in Geometry, Academic Press
- Baker, Henry Frederick (1923), Principles of geometry. Volume 3. Solid geometry. Quadrics, cubic curves in space, cubic surfaces., Cambridge Library Collection, Cambridge University Press, p. 56, ISBN 978-1-108-01779-4, MR 2857520. Reprinted 2010.
- Jones, Alfred Clement (1912). An Introduction to Algebraical Geometry. Clarendon. p. 390.