प्रासंगिकता तर्क

From Vigyanwiki
Revision as of 00:11, 17 February 2023 by alpha>Indicwiki (Created page with "प्रासंगिकता तर्क, जिसे प्रासंगिक तर्कशास्त्र भी कहा जाता है, एक प्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

प्रासंगिकता तर्क, जिसे प्रासंगिक तर्कशास्त्र भी कहा जाता है, एक प्रकार का गैर-शास्त्रीय तर्क है जिसके लिए पूर्ववर्ती (तर्क) की आवश्यकता होती है और प्रासंगिक रूप से संबंधित होने के परिणामस्वरूप प्रवेश होता है। उन्हें अवसंरचनात्मक तर्क या मॉडल तर्क लॉजिक्स के परिवार के रूप में देखा जा सकता है। यह आम तौर पर, लेकिन सार्वभौमिक रूप से नहीं, ब्रिटिश और विशेष रूप से, ऑस्ट्रेलियाई तर्कशास्त्रियों द्वारा 'प्रासंगिक तर्क' और अमेरिकी तर्कशास्त्रियों द्वारा 'प्रासंगिक तर्क' कहा जाता है।

प्रासंगिकता तर्क का उद्देश्य उन निहितार्थों के पहलुओं को पकड़ना है जो शास्त्रीय सत्य-कार्यात्मक तर्क में भौतिक सशर्त संचालक द्वारा अनदेखा किए जाते हैं, अर्थात् पूर्ववर्ती और एक सच्चे निहितार्थ के सशर्त के बीच प्रासंगिकता की धारणा। यह विचार नया नहीं है: सी। आई। लुईस को मोडल लॉजिक का आविष्कार करने के लिए प्रेरित किया गया था, और विशेष रूप से सख्त निहितार्थ, इस आधार पर कि शास्त्रीय तर्क भौतिक निहितार्थ के विरोधाभासों को अनुदान देता है जैसे कि सिद्धांत कि रिक्त सत्य।[1][2] इसलिए यदि मैं एक गधा हूं, तो भौतिक निहितार्थ के रूप में अनुवादित होने पर दो और दो चार सत्य होते हैं, फिर भी यह सहज रूप से झूठा लगता है क्योंकि एक सच्चे निहितार्थ को प्रासंगिकता की कुछ धारणा द्वारा पूर्ववर्ती और परिणामी को एक साथ बांधना चाहिए। और बोलने वाला गधा है या नहीं, यह किसी भी तरह से प्रासंगिक नहीं लगता कि दो और दो चार हैं या नहीं।

प्रासंगिकता तर्क प्रासंगिकता की धारणा को औपचारिक रूप से कैसे पकड़ता है? एक प्रस्तावपरक कलन के लिए एक वाक्यात्मक बाधा के संदर्भ में, यह आवश्यक है, लेकिन पर्याप्त नहीं है, कि परिसर और निष्कर्ष साझा परमाणु सूत्र (सूत्र जिनमें कोई तार्किक संबंध नहीं है)। एक विधेय कलन में, प्रासंगिकता के लिए परिसर और निष्कर्ष के बीच चर और स्थिरांक साझा करने की आवश्यकता होती है। यह सुनिश्चित किया जा सकता है (मजबूत परिस्थितियों के साथ), उदाहरण के लिए, प्राकृतिक कटौती प्रणाली के नियमों पर कुछ प्रतिबंध लगाकर। विशेष रूप से, एक फिच-शैली की प्राकृतिक कटौती को प्रासंगिकता को समायोजित करने के लिए अनुकूलित किया जा सकता है, जिसमें अनुमान के आवेदन की प्रत्येक पंक्ति के अंत में टैग लगाकर अनुमान के निष्कर्ष के लिए प्रासंगिक परिसर का संकेत दिया जा सकता है। जेंटजन-शैली अनुक्रमिक कलन को कमजोर करने वाले नियमों को हटाकर संशोधित किया जा सकता है जो अनुक्रमों के दाएं या बाएं तरफ मनमाने ढंग से सूत्रों की शुरूआत की अनुमति देता है।

प्रासंगिकता लॉजिक्स की एक उल्लेखनीय विशेषता यह है कि वे परासंगत तर्क हैं: एक विरोधाभास के अस्तित्व से विस्फोट के सिद्धांत का कारण नहीं होगा। यह इस तथ्य से अनुसरण करता है कि एक विरोधाभासी पूर्ववर्ती के साथ एक सशर्त जो परिणामी के साथ कोई प्रस्ताव या विधेय पत्र साझा नहीं करता है, वह सत्य (या व्युत्पन्न) नहीं हो सकता है।

इतिहास

प्रासंगिकता तर्क 1928 में सोवियत दार्शनिक इवान ई. ओर्लोव (1886 - लगभग 1936) द्वारा अपने कड़ाई से गणितीय पेपर द लॉजिक ऑफ़ कम्पैटिबिलिटी ऑफ़ प्रपोज़िशंस में प्रकाशित किया गया था, जो मेटमैथेस्की स्बोर्निक में प्रकाशित हुआ था। प्रासंगिक निहितार्थ का मूल विचार मध्यकालीन तर्क में प्रकट होता है, और कुछ अग्रणी कार्य विल्हेम एकरमैन द्वारा किया गया था,[3] मोह शॉ-क्वेई,[4] और अलोंजो चर्च[5] 1950 में। उन पर चित्रण करते हुए, न्युएल बेलनाप और एलन रॉस एंडरसन (अन्य लोगों के साथ) ने 1970 के दशक में इस विषय की महान रचना लिखी, एनटेलमेंट: द लॉजिक ऑफ़ रेलेवेंस एंड नेसेसिटी (दूसरा खंड नब्बे के दशक में प्रकाशित हुआ)। उन्होंने प्रवेश की प्रणालियों और प्रासंगिकता की प्रणालियों पर ध्यान केंद्रित किया, जहां पूर्व प्रकार के निहितार्थ प्रासंगिक और आवश्यक दोनों माने जाते हैं।

सिद्धांत

प्रासंगिकता तर्क के शुरुआती विकास ने मजबूत प्रणालियों पर ध्यान केंद्रित किया। राउतले-मेयर सिमेंटिक्स के विकास ने कमजोर लॉजिक्स की एक श्रृंखला को सामने लाया। इन लॉजिक्स में सबसे कमजोर प्रासंगिकता लॉजिक बी है। यह निम्नलिखित सिद्धांतों और नियमों के साथ स्वयंसिद्ध है।

नियम निम्नलिखित हैं।

निम्नलिखित में से किसी भी स्वयंसिद्ध को जोड़कर मजबूत तर्क प्राप्त किए जा सकते हैं।

बी की तुलना में कुछ उल्लेखनीय लॉजिक्स मजबूत हैं जिन्हें निम्नानुसार बी में सिद्धांतों को जोड़कर प्राप्त किया जा सकता है।

  • DW के लिए, अभिगृहीत 1 जोड़ें।
  • डीजे के लिए, स्वयंसिद्ध 1, 2 जोड़ें।
  • TW के लिए, अभिगृहीत 1, 2, 3, 4 जोड़ें।
  • RW के लिए, अभिगृहीत 1, 2, 3, 4, 8, 9 जोड़ें।
  • T के लिए अभिगृहीत 1, 2, 3, 4, 5, 6, 7, 11 जोड़ें।
  • R के लिए, अभिगृहीत 1-11 जोड़ें।
  • E के लिए, अभिगृहीत 1-7, 10, 11 जोड़ें, , और , कहाँ परिभाषित किया जाता है .
  • RM के लिए, सभी अतिरिक्त अभिगृहीत जोड़ें।

मॉडल

रूटले-मेयर मॉडल

प्रासंगिकता लॉजिक्स के लिए मानक मॉडल सिद्धांत रिचर्ड सिल्वन और बॉब मेयेर (तर्कशास्त्री)लोजिशियन) द्वारा विकसित रूटले-मेयर टर्नरी-रिलेशनल सिमेंटिक्स है। एक प्रस्तावक भाषा के लिए एक रूटली-मेयर फ्रेम एफ चौगुनी (डब्ल्यू, आर, *, 0) है, जहां डब्ल्यू एक गैर-खाली सेट है, आर डब्ल्यू पर एक टर्नरी संबंध है, और * डब्ल्यू से डब्ल्यू का एक कार्य है, और . एक रूटली-मेयर मॉडल एम एक रूटली-मेयर फ्रेम एफ है, साथ में एक वैल्यूएशन के साथ, , जो प्रत्येक बिंदु के सापेक्ष प्रत्येक परमाणु तर्कवाक्य को एक सत्य मान प्रदान करता है . रूटली-मेयर फ्रेम पर कुछ शर्तें रखी गई हैं। परिभाषित करना जैसा .

  • .
  • अगर और , तब .
  • अगर और , तब .
  • .
  • अगर , तब .

लिखना और यह इंगित करने के लिए कि सूत्र सत्य है, या सत्य नहीं है, क्रमशः, बिंदु पर में . रूटली-मेयर मॉडल पर एक अंतिम शर्त आनुवंशिकता की स्थिति है।

  • अगर और , तब , सभी परमाणु प्रस्तावों के लिए .

आगमनात्मक तर्क द्वारा, नीचे दी गई सत्य स्थितियों का उपयोग करते हुए, आनुवंशिकता को जटिल सूत्रों तक विस्तारित करने के लिए दिखाया जा सकता है।

  • अगर और , तब , सभी सूत्रों के लिए .

जटिल सूत्रों के लिए सत्य स्थितियाँ इस प्रकार हैं।

  • और
  • या

एक सूत्र मॉडल में रखता है शायद ज़रुरत पड़े . एक सूत्र एक फ्रेम पर रखता है iff A प्रत्येक मॉडल में धारण करता है . एक सूत्र फ्रेम के एक वर्ग में मान्य है यदि ए उस वर्ग में प्रत्येक फ्रेम पर रखता है। उपरोक्त शर्तों को पूरा करने वाले सभी रूटली-मेयर फ़्रेमों का वर्ग प्रासंगिकता तर्क बी को मान्य करता है। R और * पर उचित प्रतिबंध लगाकर अन्य प्रासंगिक तर्कों के लिए रूटले-मेयर फ़्रेम प्राप्त कर सकते हैं। कुछ मानक परिभाषाओं का उपयोग करके इन स्थितियों को बताना आसान है। होने देना के रूप में परिभाषित किया जाए , और जाने के रूप में परिभाषित किया जाए . फ्रेम की कुछ स्थितियाँ और वे मान्यताएँ जो वे मान्य करते हैं, निम्नलिखित हैं।

Name Frame condition Axiom
Pseudo-modus ponens
Prefixing
Suffixing
Contraction
Conjunctive syllogism
Assertion
E axiom
Mingle axiom or
Reductio
Contraposition
Excluded middle
Strict implication weakening
Weakening

पिछली दो शर्तें कमजोर करने के रूपों को मान्य करती हैं कि प्रासंगिकता तर्क मूल रूप से बचने के लिए विकसित किए गए थे। रूटले-मेयर मॉडल के लचीलेपन को दिखाने के लिए उन्हें शामिल किया गया है।

परिचालन मॉडल

उर्कहार्ट मॉडल

अलसादेयर उर्कहार्ट ने अपने पीएचडी थीसिस और बाद के काम में प्रासंगिकता तर्कों के निषेध-मुक्त टुकड़ों के लिए परिचालन मॉडल विकसित किए थे। परिचालन मॉडल के पीछे सहज विचार यह है कि एक मॉडल में बिंदु सूचना के टुकड़े होते हैं, और एक सशर्त का समर्थन करने वाली जानकारी को उसके पूर्ववर्ती का समर्थन करने वाली जानकारी के संयोजन से कुछ जानकारी प्राप्त होती है जो परिणाम का समर्थन करती है। चूंकि परिचालन मॉडल आम तौर पर नकारात्मकता की व्याख्या नहीं करते हैं, इसलिए यह खंड केवल सशर्त, संयोजन और संयोजन वाली भाषाओं पर विचार करेगा।

एक ऑपरेशनल फ्रेम एक ट्रिपल है , कहाँ एक अरिक्त समुच्चय है, , और एक बाइनरी ऑपरेशन है . फ़्रेम में शर्तें होती हैं, जिनमें से कुछ को अलग-अलग लॉजिक्स को मॉडल करने के लिए छोड़ा जा सकता है। उर्कहार्ट ने प्रासंगिकता तर्क R की सशर्त प्रतिरूपण के लिए प्रस्तावित शर्तें निम्नलिखित हैं।

इन शर्तों के तहत, ऑपरेशनल फ्रेम एक ज्वाइन-सेमी-जाली है।

एक परिचालन मॉडल एक फ्रेम है मूल्यांकन के साथ जो बिंदुओं के जोड़े और परमाणु प्रस्तावों को सत्य मान, T या F से मैप करता है। मूल्यांकन तक बढ़ाया जा सकता है जटिल सूत्रों पर इस प्रकार है।

  • , परमाणु प्रस्तावों के लिए
  • और
  • या

एक सूत्र मॉडल में रखता है आईएफएफ . एक सूत्र मॉडलों की एक श्रेणी में मान्य है यदि यह प्रत्येक मॉडल में है .

आर का सशर्त टुकड़ा अर्ध-जाली मॉडल के वर्ग के संबंध में ध्वनि और पूर्ण है। संयोजन और संयोजन के साथ तर्क आर के सशर्त, संयोजन, संयोजन खंड से ठीक से मजबूत है। विशेष रूप से, सूत्र परिचालन मॉडल के लिए मान्य है लेकिन यह आर में अमान्य है। आर के लिए परिचालन मॉडल द्वारा उत्पन्न तर्क में किट ठीक और जेराल्ड चार्लवुड के कारण एक पूर्ण स्वयंसिद्ध प्रमाण प्रणाली है। चार्लवुड ने तर्क के लिए एक प्राकृतिक कटौती प्रणाली भी प्रदान की, जिसे उन्होंने स्वयंसिद्ध प्रणाली के समकक्ष साबित किया। चार्लवुड ने दिखाया कि उनकी प्राकृतिक कटौती प्रणाली डेग प्रविट्ज़ द्वारा प्रदान की गई प्रणाली के बराबर है।

दुनिया के एक गैर-खाली सेट को जोड़कर परिचालन शब्दार्थ को ई की स्थिति को मॉडल करने के लिए अनुकूलित किया जा सकता है और एक अभिगम्यता संबंध पर तख्ते को। अभिगम्यता संबंध को रिफ्लेक्सिव और सकर्मक होना आवश्यक है, इस विचार को पकड़ने के लिए कि E की सशर्त में S4 आवश्यकता है। वैल्यूएशन तब परमाणु प्रस्तावों, बिंदुओं और दुनिया के सत्य मूल्यों के ट्रिपल को मैप करता है। सशर्त के लिए सत्य स्थिति को निम्नलिखित में बदल दिया गया है।

एक संबंध जोड़कर T की स्थिति को मॉडल करने के लिए परिचालन शब्दार्थ को अनुकूलित किया जा सकता है पर . निम्नलिखित शर्तों का पालन करने के लिए संबंध आवश्यक है।

  • अगर और , तब
  • अगर , तब

सशर्त के लिए सत्य स्थिति को निम्नलिखित में बदल दिया गया है।

परिचालन मॉडल के साथ संकुचन-कम प्रासंगिकता लॉजिक्स TW और RW को मॉडल करने के दो तरीके हैं। पहला तरीका यह है कि उस शर्त को गिरा दिया जाए . दूसरा तरीका फ्रेम पर अर्ध-जाल की स्थिति रखना और एक द्विआधारी संबंध जोड़ना है, , फ्रेम से असम्बद्धता का। इन मॉडलों के लिए, TW के मामले में आदेश जोड़ने के साथ, सशर्त के लिए सत्य स्थितियों को निम्न में बदल दिया गया है।


हंबरस्टोन मॉडल

अर्क्हार्ट ने दिखाया कि आर के लिए सेमिलैटिस तर्क आर के सकारात्मक टुकड़े की तुलना में ठीक से मजबूत है। लॉयड हंबरस्टोन ने परिचालन मॉडल का एक संवर्धन प्रदान किया जो संयोजन के लिए एक अलग सच्चाई की स्थिति की अनुमति देता है। मॉडल का परिणामी वर्ग वास्तव में आर का सकारात्मक टुकड़ा उत्पन्न करता है।

एक ऑपरेशनल फ्रेम चौगुना है , कहाँ एक अरिक्त समुच्चय है, , और {, } बाइनरी ऑपरेशंस चालू हैं . होने देना के रूप में परिभाषित किया जाए . फ्रेम की स्थिति इस प्रकार है।

  1. , and

एक परिचालन मॉडल एक फ्रेम है मूल्यांकन के साथ जो बिंदुओं के जोड़े और परमाणु प्रस्तावों को सत्य मान, T या F से मैप करता है। मूल्यांकन तक बढ़ाया जा सकता है जटिल सूत्रों पर इस प्रकार है।

  • , परमाणु प्रस्तावों के लिए
  • और
  • और
  • या या ; और

एक सूत्र मॉडल में रखता है आईएफएफ . एक सूत्र मॉडलों की एक श्रेणी में मान्य है यदि यह प्रत्येक मॉडल में है .

इन मॉडलों के वर्ग के संबंध में R का सकारात्मक टुकड़ा ध्वनि और पूर्ण है। हम्बरस्टोन के सिमेंटिक्स को निम्न प्रकार से फ्रेम स्थितियों को हटाकर या जोड़कर विभिन्न लॉजिक्स को मॉडल करने के लिए अनुकूलित किया जा सकता है।

System Frame conditions
B 1, 5-9, 14
TW 1, 11, 12, 5-9, 14
EW 1, 10, 11, 5-9, 14
RW 1-3, 5-9
T 1, 11, 12, 13, 5-9, 14
E 1, 10, 11, 13, 5-9, 14
R 1-9
RM 1-3, 5-9, 15


बीजगणितीय मॉडल

कुछ प्रासंगिक तर्कों को बीजगणितीय मॉडल दिए जा सकते हैं, जैसे कि तर्क R. R के लिए बीजगणितीय संरचनाएं डी मॉर्गन बीजगणित हैं, जो सेक्सटुपल हैं कहाँ

  • एक यूनरी ऑपरेशन के साथ एक वितरणात्मक जाली (आदेश) है, कानूनों का पालन करना और अगर तब ;
  • , बाइनरी ऑपरेशन क्रमविनिमेय संपत्ति है () और साहचर्य संपत्ति (), और , अर्थात। पहचान तत्व के साथ एक मोनॉयड#कम्यूटेटिव मोनॉयड है ;
  • मोनोइड जाली-आदेशित और संतुष्ट है ;
  • ; और
  • अगर , तब .

संचालन R की सशर्त व्याख्या के रूप में परिभाषित किया गया है . एक डी मॉर्गन मोनॉयड एक अवशेषित जाली है, जो निम्नलिखित अवशेषों की स्थिति का पालन करता है।

व्याख्या प्रस्तावात्मक भाषा से डी मॉर्गन मोनोइड तक एक समरूपता है ऐसा है कि

  • सभी परमाणु प्रस्तावों के लिए,

एक डी मॉर्गन मोनोइड दिया और एक व्याख्या , वह सूत्र कह सकते हैं बनाए रखता है शायद ज़रुरत पड़े . एक सूत्र वैध है अगर यह सभी डे मॉर्गन मोनोइड्स पर सभी व्याख्याओं पर कायम है। डी मॉर्गन मोनोइड्स के लिए तर्क आर ध्वनि और पूर्ण है।

यह भी देखें

संदर्भ

  1. Lewis, C. I. (1912). "Implication and the Algebra of Logic." Mind, 21(84):522–531.
  2. Lewis, C. I. (1917). "The issues concerning material implication." Journal of Philosophy, Psychology, and Scientific Methods, 14:350–356.
  3. Ackermann, W. (1956), "Begründung einer strengen Implikation", Journal of Symbolic Logic, 21 (2): 113–128, JSTOR 2268750
  4. Moh, Shaw-kwei (1950), "The Deduction Theorems and Two New Logical Systems", Methodos, 2: 56–75 Moh Shaw-Kwei, 1950, "," Methodos 2 56–75.
  5. Church, A. (1951), The Weak Theory of Implication in Kontroliertes Denken: Untersuchungen zum Logikkalkül und zur Logik der Einzelwissenschaften, Kommissions-Verlag Karl Alber, edited by A. Menne, A. Wilhelmy and H. Angsil, pp. 22–37.


ग्रन्थसूची

  • Alan Ross Anderson and Nuel Belnap, 1975. Entailment: the logic of relevance and necessity, vol. I. Princeton University Press. ISBN 0-691-07192-6
  • ------- and J. M. Dunn, 1992. Entailment: the logic of relevance and necessity, vol. II, Princeton University Press.
  • Mares, Edwin, and Meyer, R. K., 2001, "Relevant Logics", in Goble, Lou, ed., The Blackwell Guide to Philosophical Logic. Blackwell.
  • Richard Routley, Val Plumwood, Robert K. Meyer, and Ross T. Brady. Relevant Logics and their Rivals. Ridgeview, 1982.
  • R. Brady (ed.), Relevant Logics and their Rivals (Volume II), Aldershot: Ashgate, 2003.
  • Urquhart, Alasdair (1972). "Semantics for relevant logics" (PDF). Journal of Symbolic Logic. 37: 159–169. doi:10.2307/2272559.
  • Alasdair Urquhart. The Semantics of Entailment. PhD thesis, University of Pittsburgh, 1972.
  • Katalin Bimbó, Relevance logics, in Philosophy of Logic, D. Jacquette (ed.), (volume 5 of Handbook of the Philosophy of Science, D. Gabbay, P. Thagard, J. Woods (eds.)), Elsevier (North-Holland), 2006, pp. 723–789.
  • J. Michael Dunn and Greg Restall. Relevance logic. In Handbook of Philosophical Logic, Volume 6, F. Guenthner and D. Gabbay (eds.), Dordrecht: Kluwer, 2002, pp. 1–136.
  • Stephen Read, Relevant Logic, Oxford: Blackwell, 1988.
  • Humberstone, Lloyd (1987). "Operational semantics for positive R". Notre Dame Journal of Formal Logic. 29 (1): 61–80. doi:10.1305/ndjfl/1093637771.


बाहरी संबंध