चार्ज पंप

From Vigyanwiki
Revision as of 16:08, 15 February 2023 by alpha>Indicwiki (Created page with "{{more footnotes|date=November 2015}} File:Charge pump, 2 stage.svg|thumb|डीसी वोल्टेज आपूर्ति और एक पंप नियंत्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
डीसी वोल्टेज आपूर्ति और एक पंप नियंत्रण संकेत एस के साथ दो-चरण चार्ज पंप0
डायोड के साथ वोल्टेज गुणक#Dickson_charge_pump
MOSFETs के साथ डिक्सन चार्ज पंप
पीएलएल चार्ज पंप

एक चार्ज पंप एक प्रकार का डीसी-टू-डीसी कनवर्टर है जो वोल्टेज बढ़ाने या कम करने के लिए ऊर्जावान चार्ज स्टोरेज के लिए संधारित्र का उपयोग करता है। चार्ज-पंप सर्किट उच्च विद्युत दक्षता में सक्षम होते हैं, कभी-कभी 90-95% तक उच्च होते हैं, जबकि विद्युत रूप से सरल सर्किट होते हैं।

विवरण

चार्ज पंप एक कैपेसिटर के माध्यम से लोड भर में आपूर्ति वोल्टेज के कनेक्शन को नियंत्रित करने के लिए स्विचिंग डिवाइस के कुछ रूप का उपयोग करते हैं। दो चरण के चक्र में, पहले चरण में एक संधारित्र आपूर्ति भर में जुड़ा होता है, इसे उसी वोल्टेज पर चार्ज करता है। दूसरे चरण में सर्किट को फिर से कॉन्फ़िगर किया जाता है ताकि कैपेसिटर आपूर्ति और भार के साथ श्रृंखला में हो। यह लोड भर में वोल्टेज को दोगुना करता है - मूल आपूर्ति और कैपेसिटर वोल्टेज का योग। उच्च वोल्टेज स्विच्ड आउटपुट की स्पंदन प्रकृति अक्सर आउटपुट कैपेसिटर के उपयोग से कैपेसिटर को चौरसाई करती है।

एक बाहरी या द्वितीयक सर्किट स्विचिंग को चलाता है, आमतौर पर दसियों किलोहेटर्स़ पर कई मेगाहर्ट्ज़ तक। उच्च आवृत्ति आवश्यक समाई की मात्रा को कम करती है, क्योंकि कम चार्ज को संग्रहीत करने और छोटे चक्र में डंप करने की आवश्यकता होती है।

चार्ज पंप वोल्टेज को दोगुना कर सकते हैं, ट्रिपल वोल्टेज, वोल्टेज को आधा कर सकते हैं, इनवर्ट वोल्टेज, आंशिक रूप से गुणा या स्केल वोल्टेज (जैसे ×3/2, ×4/3, ×2/3, आदि) और मोड के बीच जल्दी से बारी-बारी से मनमाने वोल्टेज उत्पन्न कर सकते हैं। , नियंत्रक और सर्किट टोपोलॉजी पर निर्भर करता है।

सर्किट्री के विभिन्न हिस्सों के लिए वोल्टेज बढ़ाने और कम करने के लिए वे आमतौर पर कम-शक्ति इलेक्ट्रॉनिक्स (जैसे मोबाइल फोन) में उपयोग किए जाते हैं - आपूर्ति वोल्टेज को सावधानीपूर्वक नियंत्रित करके बिजली की खपत को कम करना।

पीएलएल के लिए शब्दावली

चार्ज पंप शब्द का उपयोग आमतौर पर चरण बंद लूप (पीएलएल) सर्किट में भी किया जाता है, हालांकि ऊपर चर्चा की गई सर्किट के विपरीत इसमें कोई पंपिंग क्रिया शामिल नहीं है। एक पीएलएल चार्ज पंप केवल एक द्विध्रुवीय स्विचित वर्तमान स्रोत है। इसका मतलब यह है कि यह सकारात्मक और नकारात्मक वर्तमान दालों को पीएलएल के लूप फिल्टर में आउटपुट कर सकता है। यह अपनी शक्ति और जमीनी आपूर्ति स्तरों से अधिक या कम वोल्टेज का उत्पादन नहीं कर सकता है।

अनुप्रयोग

  • चार्ज-पंप सर्किट के लिए एक सामान्य अनुप्रयोग RS-232 तर्क स्तर में है, जहां उनका उपयोग सकारात्मक और नकारात्मक वोल्टेज (अक्सर +10 V और -10 V) को एक 5 V या 3 V बिजली आपूर्ति रेल से प्राप्त करने के लिए किया जाता है।
  • चार्ज पंपों को एलसीडी या सफेद-एलईडी चालकों के रूप में भी इस्तेमाल किया जा सकता है, जो बैटरी जैसे एकल कम-वोल्टेज आपूर्ति से उच्च बायस वोल्टेज उत्पन्न करता है।
  • नकारात्मक वोल्टेज VBB (लगभग -3 V) उत्पन्न करने के लिए NMOS मेमोरी और माइक्रोप्रोसेसरों में चार्ज पंपों का बड़े पैमाने पर उपयोग किया जाता है, जो सब्सट्रेट से जुड़ा होता है। यह गारंटी देता है कि सभी N+-से-सब्सट्रेट जंक्शन 3 V या उससे अधिक के रिवर्स बायस्ड हैं, जिससे जंक्शन कैपेसिटेंस घट रहा है और सर्किट गति बढ़ रही है।[1]
  • 10NES को अचेत करने के लिए एक नकारात्मक वोल्टेज स्पाइक प्रदान करने वाले चार्ज पंप का उपयोग NES-संगत गेम में किया गया है, जो निंटेंडो द्वारा लाइसेंस प्राप्त नहीं है।[2]
  • 2007 तक, चार्ज पंप लगभग सभी EEPROM और फ्लैश मेमोरी | फ्लैश-मेमोरी इंटीग्रेटेड सर्किट में एकीकृत हो गए हैं। इन उपकरणों को किसी विशेष मेमोरी सेल में किसी भी मौजूदा डेटा को नए मूल्य के साथ लिखे जाने से पहले साफ करने के लिए एक उच्च-वोल्टेज पल्स की आवश्यकता होती है। प्रारंभिक EEPROM और फ्लैश-मेमोरी उपकरणों को दो बिजली की आपूर्ति की आवश्यकता होती है: +5 V (पढ़ने के लिए) और +12 V (मिटाने के लिए)। As of 2007, व्यावसायिक रूप से उपलब्ध फ्लैश मेमोरी और EEPROM मेमोरी के लिए केवल एक बाहरी बिजली आपूर्ति की आवश्यकता होती है - आम तौर पर 1.8 V या 3.3 V। एक उच्च वोल्टेज, जिसका उपयोग कोशिकाओं को मिटाने के लिए किया जाता है, एक ऑन-चिप चार्ज पंप द्वारा आंतरिक रूप से उत्पन्न होता है।
  • गेट ड्राइवर के लिए हाई-साइड ड्राइवरों में एच ब्रिज में चार्ज पंप का उपयोग किया जाता है। गेट-ड्राइविंग हाई-साइड एन-चैनल पावर एमओएसएफईटी और आईजीबीटी। जब एक आधे पुल का केंद्र कम हो जाता है, तो संधारित्र को एक डायोड के माध्यम से चार्ज किया जाता है, और इस चार्ज का उपयोग बाद में उच्च-पक्ष FET के गेट को स्रोत वोल्टेज से कुछ वोल्ट ऊपर चलाने के लिए किया जाता है ताकि इसे चालू किया जा सके। यह रणनीति अच्छी तरह से काम करती है, बशर्ते पुल नियमित रूप से स्विच किया जाता है और एक अलग बिजली आपूर्ति चलाने की जटिलता से बचा जाता है और दोनों स्विचों के लिए अधिक कुशल एन-चैनल उपकरणों का उपयोग करने की अनुमति देता है। यह सर्किट (हाई-साइड एफईटी के आवधिक स्विचिंग की आवश्यकता होती है) को बूटस्ट्रैप सर्किट भी कहा जा सकता है, और कुछ उस और चार्ज पंप के बीच अंतर करेंगे (जिसके लिए उस स्विचिंग की आवश्यकता नहीं होगी)।
  • CRT मॉनिटर में वर्टिकल डिफ्लेक्शन सर्किट। उदाहरण के लिए ic TDA1670A के उपयोग के साथ। अधिकतम विचलन प्राप्त करने के लिए, CRT कॉइल को ~ 50v की आवश्यकता होती है। 24v सप्लाई लाइन से चार्ज पंप ट्रिक दूसरे वोल्टेज की आवश्यकता को समाप्त कर देता है।
  • मोबाइल उपकरणों के लिए उच्च-शक्ति चार्ज नियंत्रक समाधान वोल्टेज को कम करने के लिए हिरन कनवर्टर के बजाय चार्ज पंप पर निर्भर करते हैं, क्योंकि उच्च दक्षता गर्मी उत्पादन को कम करती है। सैमसंग गैलेक्सी S23, जो 3A का इनपुट करंट लेता है, 2:1 करंट पंप की बदौलत अपने आंतरिक बैटरी पैक को 6A पर चार्ज कर सकता है।[3] Oppo का 240W VOOC आगे जाता है और समानांतर में तीन चार्ज पंपों का उपयोग करता है (98% दक्षता का दावा किया गया है[4]) 24V/10A से 10V/24A तक जाने के लिए, जिसे दो समानांतर बैटरी पैक द्वारा लिया जाता है।[5]


यह भी देखें

संदर्भ

  1. Jenne, F. "Substrate Bias Circuit", US Patent 3794862A, Feb 26, 1974.
  2. Kevin Horton. Colordreams Revision C. Last modified 2007-09-30. Accessed 2011-09-15.
  3. Release, Press (25 July 2022). "Smartphones - 2:1 Charge Pump Direct Charger". Power Electronics News.
  4. "OPPO 超级闪充四大技术全面突破,布局多终端、多场景闪充生态 | OPPO 官方网站". OPPO (in 中文(中国大陆)).
  5. K., Balakumar (1 March 2022). "Oppo claims new levels in fast charging through 240W SUPERVOOC - We explain it". TechRadar (in English).

Applying the equivalent resistor concept to calculating the power losses in the charge pumps

Charge pumps where the voltages across the capacitors follow the binary number system

  • Ueno, F.; Inoue, T.; Oota, I. (1986). "Realization of a new switched-capacitor transformer with a step-up transformer ratio 2n–1 using n capacitors". IEEE International Symposium on Circuits and Systems (ISCAS). pp. 805–8.
  • Starzyk, J.A.; Ying-Wei Jan; Fengjing Qiu (March 2001). "A DC-DC charge pump design based on voltage doublers". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 48 (3): 350–9. doi:10.1109/81.915390.
  • Fang Lin Luo; Hong Ye (June 2004). "Positive output multiple-lift push-pull switched-capacitor Luo-converters". IEEE Transactions on Industrial Electronics. 51 (3): 594–602. doi:10.1109/TIE.2004.825344. S2CID 22202569.
  • Ben-Yaakov, S.; Kushnerov, A. (2009). "Algebraic foundation of self adjusting Switched Capacitors Converters". 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA. pp. 1582–9. doi:10.1109/ECCE.2009.5316143. ISBN 978-1-4244-2893-9. S2CID 12915415.
  • Allasasmeh, Y.; Gregori, S. (November 2018). "High-performance switched-capacitor boost-buck integrated power converters". IEEE Transactions on Circuits and Systems I, Regular Papers. 65 (11): 3970–3983. doi:10.1109/TCSI.2018.2863239. ISSN 1558-0806. S2CID 52932169.


बाहरी संबंध

Template:Toomanylinks