युग्मन अभिगृहीत

From Vigyanwiki
Revision as of 13:49, 16 February 2023 by alpha>Abhigupta

[[स्वयंसिद्ध समुच्चय सिद्धांत]] और इसका उपयोग करने वाले तर्क, गणित और कंप्यूटर विज्ञान की शाखाओं में, युग्मन का स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के स्वयंसिद्धों में से एक है। यह ज़र्मेलो (1908) द्वारा प्राथमिक समुच्चय के अपने स्वयंसिद्ध के एक विशेष मामले के रूप में प्रस्तावित किया गया था।

औपचारिक वक्तव्य

ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की औपचारिक भाषा में, स्वयंसिद्ध पढ़ता है:

शब्दों में:

किसी भी वस्तु A और किसी भी वस्तु B को देखते हुए, एक समुच्चय C है जैसे कि, किसी भी वस्तु D को दिया गया है, D, C का सदस्य है यदि और केवल यदि D, A के बराबर है या D, B के बराबर है।

या सरल शब्दों में:

दो वस्तुएँ दी गई हैं, एक समुच्चय है जिसके सदस्य वास्तव में दी गई दो वस्तुएँ हैं।

परिणाम

जैसा कि उल्लेख किया गया है, स्वयंसिद्ध क्या कह रहा है कि, दो वस्तुओं A और B को देखते हुए, हम एक समुच्चय C पा सकते हैं जिसका सदस्य बिल्कुल A और B हैं।

हम विस्तृतता के अभिगृहीत का उपयोग यह सिद्ध करने के लिए कर सकते हैं कि यह समुच्चय C अद्वितीय है।

हम समुच्चय C को A और B का युग्म कहते हैं, और इसे {A,B} निरूपित करते हैं।

इस प्रकार स्वयंसिद्ध का सार है:

किन्हीं भी दो वस्तुओं का युग्म होता है।

समुच्चय {A,A} को संक्षिप्त रूप से {A} कहा जाता है, जिसे A युक्त एकाकी वस्तु कहा जाता है।

ध्यान दें कि एकाकी वस्तु युग्म का एक विशेष स्थिति है। एक एकाकी वस्तु का निर्माण करने में सक्षम होना आवश्यक है, उदाहरण के लिए, अनंततः अवरोही श्रृंखलाओं के अस्तित्वहीन को दिखाने के लिए नियमितता के स्वयंसिद्ध से।

युग्मन का स्वयंसिद्ध क्रमित युग्म की परिभाषा के लिए भी अनुमति देता है। किसी वस्तु के लिए और , क्रमित युग्म को निम्नलिखित द्वारा परिभाषित किया गया है:

ध्यान दें कि यह परिभाषा स्थिति को संतुष्ट करती है

क्रमित एन-टुपल्स को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:


विकल्प

गैर-स्वतंत्रता

युग्मन के स्वयंसिद्ध को सामान्यता विवादास्पद माना जाता है, और यह समकक्ष समुच्चय सिद्धांत के लगभग किसी भी स्वयंसिद्ध में प्रकट होता है। तब भी, ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के मानक सूत्रीकरण में, दो या दो से अधिक तत्वों के साथ किसी दिए गए समुच्चय पर लागू प्रतिस्थापन के स्वयंसिद्ध स्कीमा से युग्मन का स्वयंसिद्ध अनुसरण करता है, और इस प्रकार इसे कभी-कभी छोड़ दिया जाता है। {{}, {{}}} जैसे दो तत्वों वाले एक समुच्चयका अस्तित्व, या तो खाली समुच्चयके स्वयंसिद्ध और शक्ति समुच्चयके स्वयंसिद्ध या अनंत के स्वयंसिद्ध से निकाला जा सकता है।

कुछ मजबूत ZFC स्वयंसिद्धों की अनुपस्थिति में, युग्मन का स्वयंसिद्ध अभी भी बिना किसी नुकसान के कमजोर रूपों में पेश किया जा सकता है।

कमजोर

जुदाई के स्वयंसिद्ध स्कीमा के मानक रूपों की उपस्थिति में हम युग्मन के स्वयंसिद्ध को इसके कमजोर संस्करण से बदल सकते हैं:

.

युग्मन के इस कमजोर स्वयंसिद्ध का अर्थ है कि कोई भी वस्तु और किसी समुच्चयके सदस्य हैं . पृथक्करण की अभिगृहीत स्कीमा का उपयोग करके हम उस समुच्चय का निर्माण कर सकते हैं जिसके सदस्य ठीक हों और .

एक अन्य अभिगृहीत जिसका अर्थ रिक्त समुच्चय के अभिगृहीत की उपस्थिति में युग्मन की अभिगृहीत है, संयोजन की अभिगृहीत है

.

यह के उपयोग से मानक एक से अलग है के बजाय . A के लिए {} और B के लिए x का उपयोग करके, हम C के लिए {x} प्राप्त करते हैं। फिर A के लिए {x} और B के लिए y का उपयोग करते हुए, C के लिए {x, y} प्राप्त करते हैं। कोई भी परिमित बनाने के लिए इस तरह से जारी रह सकता है तय करना। और इसका उपयोग संघ के स्वयंसिद्ध का उपयोग किए बिना सभी आनुवंशिक रूप से परिमित समुच्चयउत्पन्न करने के लिए किया जा सकता है।

मजबूत

साथ में रिक्त समुच्चय का स्वयंसिद्ध और संघ का स्वयंसिद्ध, का स्वयंसिद्ध युग्मन को निम्नलिखित स्कीमा में सामान्यीकृत किया जा सकता है:

वह है:

वस्तुओं के किसी भी परिमित समुच्चयसंख्या को देखते हुए ए1 किसी के जरिएn, एक समुच्चय C है जिसके सदस्य निश्चित रूप से A हैं1 किसी के जरिएn.

यह समुच्चय C विस्तारात्मकता के अभिगृहीत द्वारा फिर से अद्वितीय है, और इसे {A1,...,एn}.

बेशक, हम अपने हाथों में पहले से ही एक (परिमित) समुच्चयके बिना वस्तुओं की एक सीमित संख्या को सख्ती से संदर्भित नहीं कर सकते हैं, जिसमें प्रश्न वाली वस्तुएं हैं। इस प्रकार, यह एक एकल कथन नहीं है, बल्कि एक स्कीमा (तर्क) है, जिसमें प्रत्येक प्राकृतिक संख्या n के लिए एक अलग कथन है।

  • मामला n = 1, A = A के साथ युग्मन का स्वयंसिद्ध है1 और बी = ए1.
  • मामला n = 2, A = A के साथ युग्मन का स्वयंसिद्ध है1 और बी = ए2.
  • मामले n > 2 को कई बार युग्मन के स्वयंसिद्ध और संघ के स्वयंसिद्ध का उपयोग करके सिद्ध किया जा सकता है।

उदाहरण के लिए, मामले n = 3 को साबित करने के लिए, तीन बार जोड़ी बनाने के स्वयंसिद्ध का उपयोग करें, जोड़ी {ए1,ए2}, एकाकी वस्तु{ए3}, और फिर जोड़ी {{A1,A2},{A3}}. संघ का स्वयंसिद्ध तब वांछित परिणाम उत्पन्न करता है, {ए1,ए2,ए3}. हम इस स्कीमा को n = 0 शामिल करने के लिए विस्तारित कर सकते हैं यदि हम उस मामले को खाली समुच्चयके स्वयंसिद्ध के रूप में व्याख्या करते हैं।

इस प्रकार, कोई इसे खाली समुच्चयऔर युग्मन के सिद्धांतों के स्थान पर एक स्वयंसिद्ध स्कीमा के रूप में उपयोग कर सकता है। आम तौर पर, हालांकि, खाली समुच्चयऔर जोड़ी को अलग से स्वयंसिद्धों का उपयोग करता है, और फिर इसे एक प्रमेय स्कीमा के रूप में साबित करता है। ध्यान दें कि इसे एक स्वयंसिद्ध स्कीमा के रूप में अपनाने से संघ के स्वयंसिद्ध को प्रतिस्थापित नहीं किया जाएगा, जो अभी भी अन्य स्थितियों के लिए आवश्यक है।

संदर्भ

  • Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
  • Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
  • Zermelo, Ernst (1908), "Untersuchungen über die Grundlagen der Mengenlehre I", Mathematische Annalen, 65 (2): 261–281, doi:10.1007/bf01449999, S2CID 120085563. English translation: Heijenoort, Jean van (1967), "Investigations in the foundations of set theory", From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199–215, ISBN 978-0-674-32449-7.