युग्मन अभिगृहीत
[[समुच्चय सिद्धांत का अभिगृहीत]] और इसका उपयोग करने वाला तर्क गणित और कंप्यूटर विज्ञान की शाखाओं में, युग्मन का अभिगृहीत ज़र्मेलो-फ्रेनकेल समुच्चय सिद्धांत के स्वयंसिद्धों में से एक है। यह ज़र्मेलो (1908) द्वारा प्राथमिक समुच्चय के अपने अभिगृहीत के एक विशेष मामले के रूप में प्रस्तावित किया गया था।
औपचारिक तथ्य
ज़र्मेलो-फ्रेंकेल अभिगृहीतों की औपचारिक भाषा में, अभिगृहीत पढ़ता है:
शब्दों में:
- किसी भी वस्तु A और किसी भी वस्तु B को देखते हुए, एक समुच्चय C है जैसे कि, किसी भी वस्तु D को दिया गया है, D, C का सदस्य है यदि D, A के बराबर है या D, B के बराबर है।
या सरल शब्दों में:
- दो वस्तुएँ दी गई हैं, एक समुच्चय है जिसके सदस्य वास्तव में दी गई दो वस्तुएँ हैं।
परिणाम
जैसा कि उल्लेख किया गया है, अभिगृहीत क्या कह रहा है कि, दो वस्तुओं A और B को देखते हुए, हम एक समुच्चय C पा सकते हैं जिसके सदस्य बिल्कुल A और B हैं।
हम यह सिद्ध करने के लिए विस्तार प्रमेय का उपयोग कर सकते हैं कि यह समुच्चय C अद्वितीय है।
हम समुच्चय C को A और B का युग्म कहते हैं, और इसे {A,B} निरूपित करते हैं।
इस प्रकार अभिगृहीत का गुण है:
- किन्हीं भी दो वस्तुओं को जोड़ा जाता है।
समुच्चय {A,A} को {A} के रूप में संक्षिप्त किया गया है, जो A युक्त एकल वस्तु है।
ध्यान दें कि एकल वस्तु युग्म का एक विशेष स्थिति है। एक एकल वस्तु का निर्माण करने में सक्षम होना आवश्यक है, उदाहरण के लिए, असीम रूप से अवरोही श्रृंखलाओं के अस्तित्वहीन को दिखाने के लिए नियमितता के अभिगृहीत द्वारा।
युग्मन का अभिगृहीत क्रमित युग्म की परिभाषा के लिए भी अनुमति देता है। किसी वस्तु के लिए और , क्रमित युग्म को निम्नलिखित द्वारा परिभाषित किया गया है:
ध्यान दें कि यह परिभाषा स्थिति को संतुष्ट करती है
क्रमित एन-टुपल्स को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:
विकल्प
गैर-स्वतंत्रता
युग्मन के अभिगृहीत को सामान्यता विवादास्पद माना जाता है और समकक्ष समुच्चय सिद्धांत के लगभग किसी भी अभिगृहीत में प्रकट होता है। फिर भी, ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के मानक सूत्रीकरण में, दो या दो से अधिक तत्वों के साथ किसी दिए गए समुच्चय पर लागू प्रतिस्थापन के अभिगृहीत रूपरेखा से युग्मन का अभिगृहीत अनुसरण करता है और इस प्रकार इसे किसी समय में छोड़ दिया जाता है। {{}, {{}}} जैसे दो तत्वों वाले एक समुच्चय का अस्तित्व, या तो रिक्त समुच्चय के अभिगृहीत और शक्ति समुच्चय के अभिगृहीत और अनंत के अभिगृहीत से निकाला जा सकता है।
कुछ महत्वपूर्ण ZFC अभिगृहीतों की अनुपस्थिति में, युग्मन का अभिगृहीत अभी भी बिना किसी हानि के कमजोर रूपों में प्रस्तुत किया जा सकता है।
कमजोर
विभाजन के अभिगृहीत रूपरेखा के मानक रूपों की उपस्थिति में हम युग्मन के अभिगृहीत को इसके कमजोर संस्करण से बदल सकते हैं:
- .
युग्मन के इस कमजोर अभिगृहीत का अर्थ है कि कोई भी वस्तु और किसी समुच्चय के सदस्य हैं . पृथक्करण की अभिगृहीत रूपरेखा का उपयोग करके हम उस समुच्चय का निर्माण कर सकते हैं जिसके सदस्य सही हों और .
एक अन्य अभिगृहीत जिसका अर्थ रिक्त समुच्चय के अभिगृहीत की उपस्थिति में युग्मन की अभिगृहीत है, संयोजन की अभिगृहीत है
- .
यह के उपयोग से मानक एक से अलग है के अतिरिक्त .
A के लिए {} और B के लिए x का उपयोग करके, हम C के लिए {x} प्राप्त करते है। फिर A के लिए {x} और B के लिए y का उपयोग करते हुए, C के लिए {x, y} प्राप्त करते हैं। कोई भी परिमित समुच्चय बनाने के लिए इस तरह से जारी रह सकता है और इसका उपयोग संघ के अभिगृहीत का उपयोग किए बिना सभी आनुवंशिक रूप से परिमित समुच्चय उत्पन्न करने के लिए किया जा सकता है।
मजबूत
रिक्त समुच्चय के अभिगृहीत और संघ के अभिगृहीत के साथ, युग्मन के अभिगृहीत को निम्नलिखित रूपरेखा में सामान्यीकृत किया जा सकता है:
वह है:
- A1 से An तक वस्तुओं की किसी भी परिमित संख्या को देखते हुए, एक समुच्चय C है जिसके सदस्य शुद्ध रुप से A1 से An तक हैं।
यह समुच्चय C फिर से विस्तार के अभिगृहीत द्वारा अद्वितीय है, और इसे {A1,...,An} के रूप में लक्षित किया गया है।
स्वभावतः, हम अपने हाथों में पहले से ही एक (परिमित) समुच्चय के बिना वस्तुओं की एक सीमित संख्या को सख्ती से संदर्भित नहीं कर सकते हैं, जिसमें प्रश्न वाली वस्तुएं हैं।
इस प्रकार, यह एक एकल कथन नहीं है, जबकि एक रूपरेखा है, जिसमें प्रत्येक प्राकृतिक संख्या n के लिए एक अलग कथन है।
- स्थिति n = 1, A = A1 और B = A1 के साथ युग्मन का अभिगृहीत है।
- स्थिति n = 2, A = A1 और B = A2 के साथ युग्मन का अभिगृहीत है।
- स्थिति n > 2 को कई बार युग्मन के अभिगृहीत और संघ के अभिगृहीत का उपयोग करके सिद्ध किया जा सकता है।
उदाहरण के लिए, स्थिति n = 3 को सिद्ध करने के लिए, युग्मन {A1,A2}, एकलवस्तु {A3}, और तब युग्मन {{A1,A2},{A3}} बनाने के लिए तीन बार युग्मन के अभिगृहीत का उपयोग करें।
संघ का अभिगृहीत परिणाम उत्पन्न करता है, {A1,A2,A3}। हम इस रूपरेखा को n = 0 सम्मिलित करने के लिए विस्तारित कर सकते हैं यदि हम उस स्थिति को रिक्त समुच्चय के अभिगृहीत के रूप में व्याख्या करते हैं।
इस प्रकार, कोई इसे रिक्त समुच्चय और युग्मन के सिद्धांतों के स्थान पर एक अभिगृहीत रूपरेखा के रूप में उपयोग कर सकता है। सामान्यता, फिर भी, रिक्त समुच्चय और युग्मन को अलग से अभिगृहीतों का उपयोग करता है और फिर इसे एक प्रमेय रूपरेखा के रूप में सिद्ध करता है। ध्यान दें कि इसे एक अभिगृहीत रूपरेखा के रूप में अपनाने से संघ के अभिगृहीत को प्रतिस्थापित नहीं किया जाएगा, जो अभी भी अन्य स्थितियों के लिए आवश्यक है।
संदर्भ
- Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
- Zermelo, Ernst (1908), "Untersuchungen über die Grundlagen der Mengenlehre I", Mathematische Annalen, 65 (2): 261–281, doi:10.1007/bf01449999, S2CID 120085563. English translation: Heijenoort, Jean van (1967), "Investigations in the foundations of set theory", From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199–215, ISBN 978-0-674-32449-7.