गणनात्मक कॉम्बिनेटरिक्स

From Vigyanwiki
Revision as of 11:42, 1 March 2023 by alpha>Indicwiki (Created page with "{{short description|Area of combinatorics that deals with the number of ways certain patterns can be formed}} एन्युमरेटिव साहचर्य क...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एन्युमरेटिव साहचर्य कॉम्बिनेटरिक्स का एक क्षेत्र है जो कुछ पैटर्न बनाने के तरीकों की संख्या से संबंधित है। इस प्रकार की समस्या के दो उदाहरण संयोजनों की गिनती और क्रमचयों की गिनती कर रहे हैं। अधिक आम तौर पर, परिमित समुच्चय S का अनंत संग्रह दिया गया हैi प्राकृतिक संख्याओं द्वारा अनुक्रमित, एन्युमरेटिव कॉम्बिनेटरिक्स एक गिनती समारोह का वर्णन करना चाहता है जो एस में वस्तुओं की संख्या की गणना करता हैn प्रत्येक एन के लिए हालांकि गिनती#गणित में गिनती एक सेट में तत्वों की संख्या एक व्यापक गणितीय समस्या है, अनुप्रयोगों में उत्पन्न होने वाली कई समस्याओं का अपेक्षाकृत सरल संयोजन विवरण है। बारह गुना तरीका एक सेट के क्रमपरिवर्तन, संयोजन और विभाजन की गिनती के लिए एक एकीकृत ढांचा प्रदान करता है।

इस तरह के सबसे सरल कार्य बंद सूत्र हैं, जिन्हें प्राथमिक कार्यों की संरचना के रूप में व्यक्त किया जा सकता है जैसे कि भाज्य, घातांक, और इसी तरह। उदाहरण के लिए, जैसा कि नीचे दिखाया गया है, n कार्डों के एक डेक के विभिन्न संभावित क्रमों की संख्या f(n) = n! है। एक बंद सूत्र खोजने की समस्या को बीजगणितीय गणना के रूप में जाना जाता है, और इसमें अक्सर पुनरावृत्ति संबंध या फलन उत्पन्न करना और वांछित बंद रूप पर पहुंचने के लिए इसका उपयोग करना शामिल होता है।

अक्सर, एक जटिल बंद सूत्र गिनती समारोह के व्यवहार में थोड़ी अंतर्दृष्टि पैदा करता है क्योंकि गिने हुए वस्तुओं की संख्या बढ़ती है। इन मामलों में, एक साधारण स्पर्शोन्मुख विश्लेषण सन्निकटन बेहतर हो सकता है। एक समारोह के लिए एक स्पर्शोन्मुख सन्निकटन है अगर जैसा . इस मामले में हम लिखते हैं


कार्य उत्पन्न करना

संयोजी वस्तुओं के परिवारों का वर्णन करने के लिए जनरेटिंग फ़ंक्शंस का उपयोग किया जाता है। होने देना वस्तुओं के परिवार को निरूपित करें और F(x) को इसका जनक फलन होने दें। तब

कहाँ आकार n के संयोजी वस्तुओं की संख्या को दर्शाता है। आकार n के संयोजी वस्तुओं की संख्या इसलिए के गुणांक द्वारा दी गई है . मिश्रित वस्तुओं के परिवारों पर कुछ सामान्य ऑपरेशन और जनरेटिंग फ़ंक्शन पर इसके प्रभाव को अब विकसित किया जाएगा। घातीय जनरेटिंग फ़ंक्शन का भी कभी-कभी उपयोग किया जाता है। इस मामले में इसका रूप होगा

एक बार निर्धारित होने के बाद, जनरेटिंग फ़ंक्शन पिछले दृष्टिकोणों द्वारा दी गई जानकारी उत्पन्न करता है। इसके अलावा, योग, गुणन, व्युत्पन्न, आदि जैसे कार्यों को उत्पन्न करने पर विभिन्न प्राकृतिक संक्रियाओं का एक संयोजी महत्व है; यह दूसरों को हल करने के लिए एक मिश्रित समस्या से परिणाम बढ़ाने की अनुमति देता है।

संघ

दो मिश्रित परिवारों को देखते हुए, और जनरेटिंग फ़ंक्शन F(x) और G(x) के साथ, दो परिवारों का अलग मिलन () का जनन फलन F(x) + G(x) है।

जोड़े

ऊपर के रूप में दो संयोजन परिवारों के लिए दो परिवारों के कार्टेशियन उत्पाद (जोड़ी) () का जनन फलन F(x)G(x) है।

अनुक्रम

जैसा कि ऊपर परिभाषित किया गया है, ए (परिमित) अनुक्रम जोड़ी के विचार को सामान्यीकृत करता है। अनुक्रम स्वयं के साथ एक संयोजी वस्तु के स्वैच्छिक कार्टेशियन उत्पाद हैं। औपचारिक रूप से:

उपरोक्त को शब्दों में रखने के लिए: एक खाली अनुक्रम या एक तत्व का अनुक्रम या दो तत्वों का अनुक्रम या तीन तत्वों का अनुक्रम इत्यादि। जनरेटिंग फ़ंक्शन होगा:


मिश्रित संरचनाएं

उपरोक्त परिचालनों का उपयोग अब पेड़ (ग्राफ सिद्धांत) (बाइनरी ट्री और प्लेन), डाइक पाथ और साइकिल सहित सामान्य कॉम्बीनेटरियल ऑब्जेक्ट्स की गणना करने के लिए किया जा सकता है। एक मिश्रित संरचना परमाणुओं से बनी होती है। उदाहरण के लिए, पेड़ों के साथ परमाणु नोड होंगे। ऑब्जेक्ट बनाने वाले परमाणुओं को या तो लेबल किया जा सकता है या लेबल नहीं किया जा सकता है। बिना लेबल वाले परमाणु एक दूसरे से अप्रभेद्य होते हैं, जबकि लेबल वाले परमाणु अलग होते हैं। इसलिए, लेबल किए गए परमाणुओं से युक्त संयोजन वस्तु के लिए केवल दो या दो से अधिक परमाणुओं की अदला-बदली करके एक नई वस्तु बनाई जा सकती है।

बाइनरी और प्लेन ट्री

बाइनरी और प्लेन ट्री एक अनलेबल्ड कॉम्बिनेटरियल स्ट्रक्चर के उदाहरण हैं। पेड़ों में किनारों से जुड़े हुए नोड्स होते हैं जैसे कि कोई चक्र (ग्राफ सिद्धांत) नहीं होता है। आम तौर पर एक नोड होता है जिसे रूट कहा जाता है, जिसका कोई पैरेंट नोड नहीं होता है। समतल वृक्षों में प्रत्येक नोड में बच्चों की मनमानी संख्या हो सकती है। बाइनरी ट्री में, प्लेन ट्री का एक विशेष मामला, प्रत्येक नोड में या तो दो या कोई संतान नहीं हो सकती है। होने देना सभी समतल वृक्षों के परिवार को निरूपित करें। तब इस परिवार को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:

इस मामले में एक नोड से मिलकर वस्तुओं के परिवार का प्रतिनिधित्व करता है। इसमें जनरेटिंग फंक्शन x है। मान लीजिए P(x) जनक फलन को निरूपित करता है . उपरोक्त विवरण को शब्दों में रखना: एक प्लेन ट्री में एक नोड होता है, जिसमें एक मनमानी संख्या में सबट्री जुड़ी होती हैं, जिनमें से प्रत्येक एक प्लेन ट्री भी होती है। पहले विकसित संयोजी संरचनाओं के परिवारों पर ऑपरेशन का उपयोग करना, यह एक पुनरावर्ती जनरेटिंग फ़ंक्शन में अनुवाद करता है:

पी (एक्स) के लिए हल करने के बाद:

आकार n के समतल वृक्षों की संख्या के लिए एक स्पष्ट सूत्र अब x के गुणांक को निकालकर निर्धारित किया जा सकता हैएन:

नोट: अंकन [एक्सn] f(x) x के गुणांक को संदर्भित करता हैn f(x) में। वर्गमूल का श्रृंखला विस्तार द्विपद प्रमेय#न्यूटन के सामान्यीकृत द्विपद प्रमेय पर आधारित है| न्यूटन का द्विपद प्रमेय का सामान्यीकरण। द्विपद गुणांक का उपयोग करके चौथी से पाँचवीं पंक्ति में हेरफेर करने के लिए # सामान्यीकरण और द्विपद श्रृंखला से संबंध की आवश्यकता है।

अंतिम पंक्ति पर व्यंजक (n − 1) के बराबर हैst कैटलन संख्या। इसलिए, पn = सीn−1.

यह भी देखें

संदर्भ