समूह वलय
बीजगणित में एक वलय तथा एक मुक्त मॉडुलेटर है जो वलय किसी समूह (गणित) में प्राकृतिक तरीके से निर्मित होता है। एक नि: शुल्क मॉडरेटर के रूप में अदिश रॉशि का वलय दिया गया है और इसका आधार दिए गए समूह के तत्वों का सेट है। एक वलय के रूप में इसका योग नियम मुक्त मॉडुलेटर का है और इसका गुणन दिए गए समूह कानून के आधार पर रैखिकता द्वारा विस्तारित होता है। कम औपचारिक रूप से एक समूह का वलय जो प्रत्येक तत्व के दिये गये वलय के भार को जोड़कर समूह का सामान्यीकरण करता है।
यदि वलय क्रमविनिमेय है तो समूह वलय को बीजगणित भी कहा जाता है यह वास्तव में दी गई वलय की संरचना के रूप में बीजगणित पर आधारित है बीजगणित में हॉफ बीजगणित की एक संरचना होती है जिसे एक समूह हॉफ बीजगणित कहा जाता है।
समूह के छल्ले का उपकरण समूह प्रतिनिधित्व के सिद्धांत में विशेष रूप से उपयोगी है।
परिभाषा
जी एक समूह जिसे गुणात्मक रूप से लिखा जाता है और आर को एक वलय होने का रूप दिया जाता है। आर पर जी का समूह तथा वलय होता है जिसे हम आर या जी (आर जी) द्वारा निरूपित करेंगे जो कार्य करने का सेट है एफ जी आर का (गणित) सामान्यीकरण (जी) बहुत से तत्वों के लिए शून्य है जहां आर में एक स्केलर एल्फा के मॉडुलेटर स्केलर उत्पाद एल्फा एफ और मैपिंग एफ को कार्य के रूप में परिभाषित किया गया है। और दो कार्यरत एफ और जी के मॉडुलेटर समूह योग को कार्य के रूप में परिभाषित किया गया है . योगात्मक समूह आर व जी को एक रिंग में बदलने के लिए हम एफ और जी के उत्पाद को कार्य के रूप में परिभाषित करते हैं।
जब एफ और जी परिमित समर्थन के हैं और वलय स्वयंसिद्धों को आसानी से सत्यापित करता है।
संकेतन और शब्दावली के कुछ बदलाव कार्य के रूप में इस प्रकार हैं जैसे f : G → R कभी-कभी जी के तत्वों में आर के गुणांक को औपचारिक रैखिक संयोजनों के रूप में लिखा जाता है।
या
जहां यह भ्रम उत्पन्न नहीं [1] होता कि यदि वलय आर वास्तव में एक क्षेत्र में हैं तो समूह वलय संरचना मॉडुलेटर संरचना 'के' के ऊपर एक सदिश स्थान है।
उदाहरण
1. माना जी बराबर सी क्यूब क्रमांक 3 का चक्रीय समूह, विद्युत उत्पादक यंत्र के साथ ए तत्व 1 सी, जी को एक तत्व आर के रूप में लिखा जा सकता है
जहां जटिल संख्यायें जेड0 साथ1 और जेड2 सी में हैं। यह चर में बहुपद वलय के समान है ए ऐसा है कि जो सी ,जी रिंग सी के लिए समरूपी है। []/
तत्व एस के रूप में उनका योग
और उनका उत्पाद इस प्रकार है-
तत्व 1जी के गुणांक रिंग (इसमें सी) सी तथा जी में एक निहित फोर्किंग को प्रेरित करता है जबकि सख्ती से सी जी के गुणक तत्व 1⋅1 है जो पहला सी से और दूसरा जी से आता है। योज्य पहचान तत्व शून्य हैं।
जब जी एक गैर-कम्यूटेटिव समूह होता है, तो शर्तों को गुणा करते समय समूह में तत्वों के क्रम को बनाए रखने के लिए सावधानी बरतनी चाहिए तथा गलती से उन्हें कम्यूट नहीं करना चाहिए।
2.उदाहरण एक वलय आर लॉरेंट बहुपद का है ये आर पर अनंत चक्रीय समूह जेड के समूह वलय से ज्यादा या कम नहीं है।
3. क्यू तत्वों का चतुष्कोणीय समूह इस प्रकार है - जहाँ आर वास्तविक संख्याओं का समुच्चय है। जो समूह वलय का तत्व है।
जहाँ एक वास्तविक संख्या है।
गुणन किसी अन्य वलय में होता है जो समूह संचालन के आधार पर परिभाषित किया जाता है उदाहरण के लिए
माना कि आर क्यू आर चतुष्कोणों के तिरछे क्षेत्र के समान नहीं हैं। ऐसा इसलिए है क्योंकि चतुष्कोणों का तिरछा क्षेत्र वलय में अतिरिक्त संबंधों को संतुष्ट करता है जैसे कि जबकि समूह की रिंग आर क्यू में के बराबर नहीं है . को अधिक विशिष्ट होने के लिए समूह आर क्यू स्थान वास्तविक सदिश स्थान आयाम 8 के रूप में रखा जाता है जबकि चतुष्कोणों के तिरछा क्षेत्र के वास्तविक सदिश स्थान के रूप में आयाम 4 है।
4. गैर-अबेलियन समूह वलय का एक और उदाहरण जेड एस 3 जहाँ जेड3 अक्षरों पर सममित समूह है। यह एक अभिन्न डोमेन नहीं है क्योंकि हमारे पास ये तत्व ट्रांसपोज़िशन-एक क्रम है जो केवल 1 और 2 को फ्रिज करता है। इसलिए अंतर्निहित रिंग एक अभिन्न डोमेन होने पर भी समूह रिंग को एक अभिन्न डोमेन नहीं होना चाहिए।
कुछ बुनियादी गुण
वलय आर की गुणात्मक पहचान को दर्शाने के लिए 1 का उपयोग करना और समूह इकाई को 1 जी द्वारा निरूपित करना रिंग आर जी में आर के लिए एक सबरिंग आइसोमोर्फिक होता है और इसके उल्टे तत्वों के समूह में जी के लिए एक उपसमूह आइसोमोर्फिक होता है । जो 1 के संकेतक समारोह पर विचार करने के लिए 1जी जो सदिश एफ द्वारा परिभाषित है।
एफ के सभी स्केलर गुणकों का सेट आर [जी] आइसोमोर्फिक से आर का एक सबरिंग है। यदि हम जी के प्रत्येक तत्व को {एस} सूचक समारोह में सही करते हैं जो एफ द्वारा परिभाषित नहीं किया गया है
परिणामी मैपिंग एक इंजेक्शन समूह समरूपता है आर [जी] में गुणन के संबंध में नहीं।
यदि आर और जी दोनों हैं (अर्थात् आर क्रमविनिमेय है और जी एक पंक्ति समूह है) तो आर (जी) क्रमविनिमेय है।
यदि एच जी का एक उपसमूह है तो आर (एच),आर (जी) का एक उपसमूह है। इसी प्रकार यदि एस, आर का एक उपवलय है तो एस (जी) का एक उपवलय है।
यदि जी 1 से अधिक क्रम का परिमित समूह है, तो आर [जी] में हमेशा शून्य विभाजक होते हैं। उदाहरण के लिए क्रम जी के तत्व जी पर विचार करें - एम > फिर 1 - जी एक शून्य विभाजक है।
उदाहरण के लिए समूह जेड [एस पर विचार करें ] और क्रम 3 का अवयव जी=(123)
एक संबंधित परिणाम यदि समूह प्रधान वलय है तो जी की कोई गैर-पहचान परिमित सामान्य उपसमूह नहीं है विशेष रूप से जी अनंत होना चाहिए।
एक गैर-पहचान परिमित सामान्य उपसमूह जी है जो . तब एच बराबर एच जैसा कि हम जानते हैं कि इसलिए , , से के आधार पर आवागमन है ।
- .
यदि शून्य नहीं है तो के जी प्रधान नहीं है। यह मूल कथन को दर्शाता है।
एक परिमित समूह प्रतिनिधित्व के सिद्धांत में होते हैं। समूह बीजगणित के 'जी' क्षेत्र के पर अनिवार्य रूप से समूह वलय है जिसमें क्षेत्र के वलय का स्थान ले रहा है। एक समुच्चय और सदिश राशि के रूप में जो क्षेत्र 'के' के ऊपर जी पर मुक्त सदिश राशि है।
एक क्षेत्र संरचना पर बीजगणित के समूह में गुणन का उपयोग करके परिभाषित किया गय। है:
जहां बाईं ओर जी और एच समूह बीजगणित के तत्वों को इंगित करते हैं, जबकि दाईं ओर गुणन समूह संक्रिया है ।
इसलिए के (जी) के आधार सदिशों को ई के रूप में भी लिखा जा सकता है जिस स्थिति में गुणन को इस प्रकार लिखा जाता है-
कार्यों के रूप में व्याख्या
जी पर के-मूल्यवान कार्यों के रूप में मुक्त वेक्टर अंतरिक्ष के बारे में सोचते हुए बीजगणित गुणन कार्यों का दृढ़ संकल्प लेते हैं।
जबकि एक परिमित समूह कार्यों के साथ पहचाना जा सकता है एक अनंत समूह के लिए ये भिन्न होते हैं। समूह बीजगणित जिसमें परिमित योग होते हैं जो समूह के कार्यों से मेल खाता है तथा निश्चित रूप से कई बिंदुओं को गायब कर देता है व्याकुल रूप से (असतत टोपोलॉजी का उपयोग करके) ये कॉम्पैक्ट समर्थन वाले कार्यों के अनुरूप हैं।
जबकि समूह बीजगणित के (जी) और कार्यों के स्थान KG := Hom(G, K) दोहरे हैं समूह बीजगणित का एक तत्व दिया गया है जो इस प्रकार है-
और समूह पर एक समारोह f : G → K ये जोड़ी के का एक तत्व देने के लिए
जो एक परिभाषित योग है क्योंकि यह परिमित है।
एक समूह बीजगणित का प्रतिनिधित्व के [जी] को एक अमूर्त बीजगणित लेते हुए एक आयाम डी के के-वेक्टर अंतरिक्ष वी पर कार्य करने वाले बीजगणित के समूह प्रतिनिधित्व के लिए कह सकता है। ऐसा प्रतिनिधित्व
समूह बीजगणित से वी के एंडोमोर्फिज्म के बीजगणित तक बीजगणित होमोमोर्फिज्म है, जो डी × डी मैट्रिक्स की रिंग के लिए आइसोमोर्फिक है।जो समतुल्य है, यह एक मॉड्यूल (गणित) है | बाएं के [जी] मॉड्यूल एबेलियन समूह वी पर स्थित है
तदनुसार
जी से वी के रैखिक ऑटोमोर्फिज़्म के समूह के लिए एक समूह समरूपता है जो कि उलटा मेट्रिसेस के सामान्य रैखिक समूह के लिए आइसोमोर्फिक है ऐसा कोई भी प्रतिनिधित्व बीजगणित को प्रेरित नहीं करता है।
बस दे कर और रैखिक रूप से फैल रहा है। इस प्रकार, समूह के निरूपण बिल्कुल बीजगणित के निरूपण के अनुरूप होते हैं, और दो सिद्धांत अनिवार्य रूप से समकक्ष हैं।
नियमित प्रतिनिधित्व
समूह बीजगणित अपने आप में एक बीजगणित है आर और आर [जी] मॉड्यूल पर अभ्यावेदन के पत्राचार के तहत यह समूह का नियमित प्रतिनिधित्व है।
एक प्रतिनिधित्व के रूप में लिखा यह प्रतिनिधित्व जी है (1) दी गई क्रिया के साथ , या
अर्ध-सरल अपघटन
सदिश राशि के जी का आयाम समूह में तत्वों की संख्या के बराबर है। क्षेत्र के को आमतौर पर जटिल संख्या सी या वास्तविक आर के रूप में लिया जाता है ताकि कोई समूह बीजगणित सी (जी) या ऑर (जी) पर चर्चा कर सके।
समूह बीजगणित 'सी' [जी] सम्मिश्र संख्याओं पर परिमित समूह का एक अर्धसरल वलय है। यह परिणाम, मास्चके प्रमेय, हमें 'सी' [जी] को 'सी' में प्रविष्टियों के साथ के छल्ले के परिमित उत्पाद के रूप में समझने की अनुमति देता है। वास्तव में, यदि हम जी के जटिल अप्रासंगिक अभ्यावेदन को वी के रूप में सूचीबद्ध करते हैं जो समूह समरूपता के अनुरूप हैं और इसलिए बीजगणित समरूपता के लिए इन मानचित्रणों को जोड़ने से बीजगणित समरूपता प्राप्त होती है
जहां वी का आयाम के है सी (जी) का एल्जेब्रा ईएनडी वी के विचार (वलय परिभाषित ) है | वलय द्वारा परिभाषित
जहाँ वी का चरित्र सिद्धांत है के ये ट्रोगोनल इडेम्पोटेंट्स की एक पूरी प्रणाली बनाते हैं, जिससे , . समरूपता परिमित समूहों पर फूरियर रूपांतरण से निकटता से संबंधित है।
अधिक सामान्य क्षेत्र 'के' के लिए जब भी के की विशेषता (बीजगणित) समूह जी के क्रम को विभाजित नहीं करती है तब के (जी) अर्धसरल होता है। जब जी एक परिमित एबेलियन समूह होता है, तो समूह वलय के (जी) क्रमविनिमेय होता है, और इसकी संरचना को एकता की जड़ के रूप में व्यक्त करना आसान होता है।
जब के विशेषता पी का एक क्षेत्र होता है जो जी के क्रम को विभाजित करता है, तो समूह की रिंग अर्ध-सरल नहीं होती है इसमें एक गैर-शून्य जैकबसन कट्टरपंथी होता है, और यह मॉड्यूलर प्रतिनिधित्व सिद्धांत के संबंधित विषय को अपना, गहरा चरित्र देता है।
एक समूह बीजगणित का केंद्र
समूह बीजगणित के एक समूह का केंद्र उन तत्वों का समूह है जो समूह बीजगणित के सभी तत्वों के साथ आवागमन करते हैं।
केंद्र वर्ग कार्यों के समुच्चय के बराबर है अर्थात उन तत्वों का समुच्चय जो प्रत्येक संयुग्मन वर्ग पर स्थिर होते हैं।
अगर K = C, जी के अलघुकरणीय चरित्र सिद्धांत का सेट आंतरिक उत्पाद के संबंध में जेड के जी का एक असामान्य आधार है।
समूह एक अनंत समूह पर बनता है उस जगहों में बहुत कम जाना जाता है और यह सक्रिय शोध का एक क्षेत्र है।[2] जहाँ आर जटिल संख्याओं का क्षेत्र है जहाँ सबसे अच्छा अध्ययन किया गया है। इन जगहों में, इरविंग कपलान्स्की ने साबित किया कि यदि ए और बी 'सी' [जी] के तत्व हैं ab = 1, तब ba = 1 आर सकारात्मक विशेषता का क्षेत्र है जो अज्ञात रहता है।
कप्लान्स्की के अनुमान (1940) कहते हैं कि यदि जी एक मरोड़-मुक्त समूह है और के एक क्षेत्र है तो समूह वलय के(जी) में कोई गैर-तुच्छ शून्य विभाजक नहीं है। यह अनुमान के (जी) के समतुल्य है जिसमें के और जी के लिए समान परिकल्पना है।
जबकि स्थिति यह है कि के एक क्षेत्र है जिसे किसी भी वलय में शिथिल किया जा सकता है जिसे एक अभिन्न डोमेन में एम्बेड किया जा सकता है।
जबकि मरोड़-मुक्त समूहों के कुछ विशेष जगहों को शून्य विभाजक को दिखाया गया है जो इसमें सम्मिलित है।
- अद्वितीय उत्पाद समूह (उदाहरण के लिए ऑर्डर करने योग्य समूह, विशेष रूप से निःशुल्क समूह)
- प्राथमिक अनुमन्य समूह (जैसे वस्तुतः एबेलियन समूह)
- विशेष रूप से समूह जो स्वतंत्र रूप से आर पर असममित रूप से कार्य करते हैं और प्रक्षेपी विमान की एक दो या तीन प्रतियों के प्रत्यक्ष योगों के मूलभूत समूहों को छोड़कर सतह समूहों के मूलभूत समूह हैं।
स्थानीय रूप से कॉम्पैक्ट समूह के लेख समूह बीजगणित में अधिक विस्तारित हैं।
श्रेणी सिद्धांत
संलग्न
श्रेणी सिद्धांत समूह वलय निर्माण इकाइयों के समूह से जुड़ा हुआ है निम्नलिखित कारक एक सहायक कारक हैं।
जहाँ एक समूह आर पर उसके समूह वलय में ले जाता है और इकाइयों के अपने समूह के लिए एक आर-बीजगणित लेता है।
जहाँ R = Zयह समूहों की श्रेणी और वलय की श्रेणी के बीच एक संयोजन देता है और संयोजन की इकाई समूह जी को उस समूह में ले जाती है जिसमें तुच्छ इकाइयाँ होती हैं: G × {±1} = {±g}. सामान्य तौर पर समूह के छल्ले में गैर-तुच्छ इकाइयां होती हैं। यदि जी में तत्व ए और बी हैं जैसे कि और बी सामान्य नहीं है ।
ह इसलिए . तत्व 1 + x अनंत क्रम की एक इकाई है।
सार्वभौमिक संपत्ति
उपरोक्त संयोजन समूह के छल्ले की एक सार्वभौमिक संपत्ति व्यक्त करता है।[1] आर वलय बने जी समूह बने और एस आर बीजगणित बने किसी भी समूह समरूपता के लिए है आर बीजगणित समरूपता है तो i समावेशन है
दूसरे शब्दों में, अद्वितीय समाकारिता है जो निम्न रेखाचित्र को कम्यूट करती है:
- इस संपत्ति को संतुष्ट करने वाली कोई अन्य वलय समूह की रिंग के लिए गणितीय शब्दावली आइसोमोर्फिक की सूची है।
आशा बीजगणित
समूह बीजगणित के (जी) में आशा बीजगणित की एक प्राकृतिक संरचना है। सहगुणन द्वारा परिभाषित किया गया है रैखिक रूप से विस्तारित और एंटीपोड है जो इस प्रकार बढ़ाया गया।
सामान्यीकरण
समूह बीजगणित मोनोलोड रिंग के लिए सामान्यीकरण करता है जो श्रेणी बीजगणित घटना बीजगणित घटना बीजगणित का उदाहरण है।
छानने का कार्य
यदि किसी समूह का कार्य है तो उदाहरण के लिए यदि जेनरेटर का विकल्प है और कोई मेैट्रिक शब्द लेता है जैसा कॉक्सेटर समूह में होता है तो समूह की रिंग एक जोड़ बीजगणित बन जाती है।
यह भी देखें
- स्थानीय रूप से सम्पर्क समूह का समूह बीजगणित
- मोनोलोड रिंग
- कपलान्सकी के अनुमान
प्रतिनिधित्व सिद्धांत
- समूह का प्रतिनिधित्व किया
- नियमित प्रतिनिधित्व
श्रेणी सिद्धांत
- स्पष्ट बीजगणित
- इकाइयों का समूह
- घटना बीजगणित
- तरकश (गणित)
टिप्पणियाँ
- ↑ 1.0 1.1 Polcino & Sehgal (2002), p. 131.
- ↑ Passman, Donald S. (1976). "What is a group ring?". Amer. Math. Monthly. 83: 173–185. doi:10.2307/2977018.
संदर्भ
- A. A. Bovdi (2001) [1994], "Group algebra", Encyclopedia of Mathematics, EMS Press
- Milies, César Polcino; Sehgal, Sudarshan K. An introduction to group rings. Algebras and applications, Volume 1. Springer, 2002. ISBN 978-1-4020-0238-0
- Charles W. Curtis, Irving Reiner. Representation theory of finite groups and associative algebras, Interscience (1962)
- D.S. Passman, The algebraic structure of group rings, Wiley (1977)