संरचनात्मक समीकरण मॉडलिंग

From Vigyanwiki
Revision as of 01:37, 2 March 2023 by alpha>Mithlesh
An example structural equation model
चित्र 1. आकलन के पश्चात उदाहरण संरचनात्मक समीकरण मॉडल। अव्यक्त चर सामान्य रूप से अंडाकार के साथ दर्शाए जाते हैं और देखे गए चर आयतों में दिखाए जाते हैं। अवशिष्ट और प्रसरण दो सिरों वाले तीरों (यहां दिखाए गए) या ल तीरों और वृत्त (यहां उपयोग नहीं किए गए) के रूप में खींचे गए हैं। प्रतिरूप को पैमाना प्रदान करने के लिए अव्यक्त IQ विचरण 1 पर तय किया गया है। चित्र 1 गुप्त बुद्धि के प्रत्येक संकेतक और गुप्त उपलब्धि के प्रत्येक संकेतक को प्रभावित करने वाली माप त्रुटियों को दर्शाता है। न तो संकेतकों और न ही संकेतकों की माप त्रुटियों को अव्यक्त चरों को प्रभावित करने के रूप में प्रतिरूपित किया जाता है, किन्तु यदि शोधकर्ता उन्हें प्रतिरूप करने का विकल्प चुनते हैं तो वे ऐसा कर सकते हैं।
An example structural equation model pre-estimation
चित्र 2. आकलन से पूर्व उदाहरण संरचनात्मक समीकरण मॉडल। चित्र 1 के समान किन्तु मानकीकृत मूल्यों और कम वस्तुओं के बिना। क्योंकि बुद्धि और शैक्षणिक प्रदर्शन केवल कल्पना या सिद्धांत-पोस्ट किए गए चर हैं, उनके त्रुटिहीन पैमाने के मूल्य अज्ञात हैं, चूँकि प्रतिरूप निर्दिष्ट करता है कि प्रत्येक अव्यक्त चर के मूल्यों को संकेतकों में से के निकट देखे जाने योग्य पैमाने के साथ कहीं गिरना चाहिए। अव्यक्त को संकेतक से जोड़ने वाला 1.0 प्रभाव निर्दिष्ट करता है कि प्रत्येक वास्तविक इकाई में अव्यक्त चर के मूल्य में वृद्धि या कमी के परिणामस्वरूप संबंधित इकाई में वृद्धि या संकेतक के मूल्य में कमी होती है। यह आशा की जाती है कि प्रत्येक अव्यक्त के लिए अच्छा संकेतक चुना गया है, किन्तु 1.0 मान सही माप का संकेत नहीं देते हैं क्योंकि यह प्रतिरूप यह भी बताता है कि अन्य अनिर्दिष्ट संस्थाएं हैं जो प्रेक्षित संकेतक मापों को कारणात्मक रूप से प्रभावित करती हैं, जिससे माप त्रुटि का परिचय मिलता है। यह प्रतिरूप बताता है कि भिन्न -भिन्न माप त्रुटियां गुप्त बुद्धि के दो संकेतकों में से प्रत्येक को प्रभावित करती हैं, और गुप्त उपलब्धि के प्रत्येक संकेतक को प्रभावित करती हैं। शैक्षणिक प्रदर्शन की ओर संकेत करते हुए बिना लेबल वाला तीर स्वीकार करता है कि बुद्धिमत्ता के अतिरिक्त अन्य चीजें भी शैक्षणिक प्रदर्शन को प्रभावित कर सकती हैं।

संरचनात्मक समीकरण मॉडलिंग सेम (SEM) वैज्ञानिकों द्वारा प्रयोग किए जाने वाले विधि के समूह के लिए क्रमित करते है, जो विज्ञान में प्रयोगात्मक और अवलोकन अनुसंधान दोनों में उपयोग किया जाता है,[1]जैसे- व्यवसाय,[2] और अन्य क्षेत्र है। इसका उपयोग सामाजिक और व्यवहार विज्ञान में सबसे अधिक किया जाता है। अत्यधिक प्रौद्योगिकी भाषा के संदर्भ के सेम की परिभाषा कठिन है, किन्तु उत्तम प्रारम्भ का स्थान नाम ही है।

सेम में प्रतिरूप का निर्माण सम्मलित है, यह दर्शाने के लिए कि कैसे अवलोकनीय या सैद्धांतिक घटना के विभिन्न पार्श्व को दूसरे से संरचनात्मक रूप से संबंधित कार्य-कारण माना जाता है। प्रतिरूप के संरचना स्वरूप का तात्पर्य उन चरों के मध्य सैद्धांतिक संघों से है जो अन्वेषण के अंतर्गत घटना का प्रतिनिधित्व करते हैं। अनुमानित कारण संरचना को अधिकांशतः चर के मध्य कारण का प्रतिनिधित्व करने के साथ चित्रित किया जाता है (जैसा कि आंकड़े 1 और 2 में) किन्तु इस कारण सम्बन्ध को समान रूप से समीकरण के रूप में दर्शाया जा सकता है। संरचनाओं का अर्थ है कि सम्बन्ध के विशिष्ट प्रतिरूप चर के मूल्यों के मध्य दिखाई देने चाहिए, और चर के मूल्यों के मध्य देखे गए सम्बन्ध का उपयोग कारण प्रभाव के परिमाण का अनुमान लगाने के लिए किया जाता है, और यह अनुसंधान के लिए मनाया गया डेटा संगत है या नहीं अनुमानित कारण संरचना सेम में समीकरण गणित और सांख्यिकी गुण हैं जो प्रतिरूप और इसकी संरचनात्मक विशेषताओं द्वारा निहित हैं, और प्रायोगिक या अवलोकन संबंधी डेटा पर चलने वाले सांख्यिकीय एल्गोरिदम (सामान्यतः आव्यूह गणना और सामान्यीकृत रैखिक प्रतिरूप पर आधारित) के साथ अनुमानित हैं।

संरचनात्मक समीकरण प्रतिरूप क्या है और क्या नहीं है, के मध्य सीमा में सदैव की स्पष्टता नहीं होती है, किन्तु एसई प्रतिरूप में अधिकांशतः अव्यक्त चर के समूह के मध्य अनुमानित कारण सम्बन्ध होते हैं (चर उपस्तिथ होते हैं किन्तु जिन्हें सरलता से नहीं देखा जा सकता है) और पोस्ट किए गए को जोड़ने वाले कारण सम्बन्ध अव्यक्त चर जिन्हें देखा जा सकता है और जिनके मान कुछ डेटा समूह में उपलब्ध हैं। अव्यक्त कारण सम्बन्ध की शैलियों के मध्य भिन्नता, अव्यक्त चर को मापने वाले प्रेक्षित चर के मध्य भिन्नता, और सांख्यिकीय अनुमान रणनीतियों में भिन्नता के परिणामस्वरूप सेम उपकरण किट में पुष्टि कारक विश्लेषण, पुष्टिकरण समग्र विश्लेषण, पथ विश्लेषण (सांख्यिकी), बहु-समूह मॉडलिंग सम्मलित हैं। अनुदैर्ध्य मॉडलिंग, आंशिक न्यूनतम वर्ग पथ मॉडलिंग, अव्यक्त विकास मॉडलिंग और श्रेणीबद्ध या बहुस्तरीय मॉडलिंग हैं।[3][4][5]

सेम का उपयोग सामान्यतः उचित है क्योंकि यह उन अव्यक्त चरों की पहचान करने में सहायता करता है जिनके बारे में माना जाता है कि वे उपस्तिथ हैं, किन्तु उन्हें सरलता से नहीं देखा जा सकता है (जैसे रूप, बुद्धि या मानसिक बीमारी)। चूँकि एसईएम क्या है और क्या नहीं है, इसकी सदैव स्पष्ट सीमाएं नहीं होती हैं,[6] इसमें सामान्यतः पथ प्रतिरूप सम्मलित होते हैं (पथ विश्लेषण (सांख्यिकी) भी देखें) और माप प्रतिरूप (कारक विश्लेषण भी देखें) में देखे गए डेटा से लिए गए वास्तविक चर के अंतर्निहित चर के मध्य संरचनात्मक सम्बन्ध की अन्वेषण करने के लिए सदैव सांख्यिकीय प्रतिरूप और कंप्यूटर प्रोग्राम को नियोजित करते हैं।[3] सेम का उपयोग करने वाले शोधकर्ता प्रत्येक प्रतिरूप किए गए (उदाहरण के लिए चित्र 1 में दिखाए गए नंबर) गुणांक की शक्ति और संकेत का अनुमान लगाने के लिए सॉफ्टवेयर प्रोग्राम का उपयोग करते हैं, और डायग्नोस्टिक प्रदान करने के लिए विचार देते हैं कि कौन से संकेतक या प्रतिरूप घटक के मध्य असंगतता उत्पन्न कर सकते हैं। एसईएम विधियों की आलोचना गणितीय सूत्रीकरण समस्याओं, बाहरी वैधता स्थापित किए बिना प्रतिरूप को स्वीकार करने की प्रवृत्ति और संभावित दार्शनिक पूर्वाग्रह की ओर संकेत करती है। रेफरी>Tarka, Piotr (2017). "संरचनात्मक समीकरण मॉडलिंग का अवलोकन: सामाजिक विज्ञान में इसकी शुरुआत, ऐतिहासिक विकास, उपयोगिता और विवाद". Quality & Quantity. 52 (1): 313–54. doi:10.1007/s11135-017-0469-8. PMC 5794813. PMID 29416184.</ref>

सेम विचार देता है कि बुद्धि (जैसा कि चार प्रश्नों द्वारा मापा जाता है) शैक्षणिक प्रदर्शन की भविष्यवाणी कर सकता है (जैसा कि सैट, एक्ट, और हाई स्कूल जीपीए (GPA) द्वारा मापा जाता है) चित्र 1 में दिखाया गया है। मानव बुद्धि की अवधारणा को सरलता से उस प्रकार नहीं मापा जा सकता है जिससे व्यक्ति की ऊंचाई या भार मापें जाते है। इसके अतिरिक्त, शोधकर्ताओं के निकट बुद्धि का सिद्धांत और अवधारणा है और फिर प्रश्नावली या परीक्षण जैसे माप उपकरण को डिजाइन करते हैं जो उन्हें बुद्धि के कई संकेतक प्रदान करते हैं। इन संकेतों को प्रतिरूप में संयोजित किया जाता है जिससे कि संकेतों से अव्यक्त चर (चित्र 1 में बुद्धि के लिए वृत्त) के रूप में बुद्धिमत्ता को मापने का प्रशंसनीय विधि बनाया जा सके (चित्र 1 में स्केल 1-4 के साथ वर्गाकार बक्से)।[7]चित्र 1 को अंतिम प्रतिरूप के रूप में प्रस्तुत किया गया है, इसे चलाने और सभी अनुमानों (तीरों पर संख्या) को प्राप्त करने के पश्चात सेम का प्रतिनिधित्व करने के लिए सबसे उत्तम प्रतीकात्मक संकेतन पर कोई सहमति नहीं है, उदाहरण के लिए चित्र 2 चित्र 1 के समान प्रतिरूप का प्रतिनिधित्व करता है, बिना कई तीरों के और प्रारूप में जो प्रतिरूप को चलाने से पूर्व हो सकता है।

एसईएम का बड़ा लाभ यह है कि ये सभी माप और परीक्षण के साथ सांख्यिकीय अनुमान प्रक्रिया में होते हैं, जहां प्रतिरूप से सभी जानकारी का उपयोग करके पूर्ण प्रतिरूप में त्रुटियों की गणना की जाती है। इसका तात्पर्य यह है कि त्रुटियां अधिक त्रुटिहीन हैं यदि शोधकर्ता को प्रतिरूप के प्रत्येक भाग की भिन्न-भिन्न गणना करनी है।[8]

इतिहास

संरचनात्मक समीकरण मॉडलिंग सेम की जड़ें सेवेल राइट के कार्य में हैं, जिन्होंने जनसंख्या आनुवंशिकी में देखे गए चर के प्रत्यक्ष और अप्रत्यक्ष प्रभावों के आधार पर प्रतिगमन समीकरणों के लिए स्पष्ट कारण व्याख्याएं प्रारम्भ कीं।[9][10] ली एम. वोल्फले ने सिवाल राइट की पथ गुणांक पद्धति का व्याख्यात्मक ग्रंथ सूची इतिहास संकलित किया जिसे पथ विश्लेषण (सांख्यिकी) के रूप में जानते हैं।[11] राइट ने परिणाम की भविष्यवाणी करने के लिए प्रतिगमन का उपयोग करने के मानक अभ्यास में दो महत्वपूर्ण तत्व जोड़े। ये (1) से अधिक समाश्रयण समीकरणों की जानकारी को संयोजित करने के लिए (2) प्रतिगमन के लिए केवल पूर्वानुमान के अतिरिक्त कारणात्मक दृष्टिकोण का उपयोग करना। सीवेल राइट ने अपने 1934 के लेख में द मेथड ऑफ पाथ गुणांकों में पथ विश्लेषण की पद्धति को समेकित किया।[12]

ओटिस डुडले डंकन ने 1975 में सेम को सामाजिक विज्ञान में प्रस्तुत किया[13] और यह 1970 और 80 के दशक में अधिक विस्तारित हुआ। मनोविज्ञान, समाजशास्त्र और अर्थशास्त्र में विकसित विभिन्न गणितीय रूप से संबंधित मॉडलिंग दृष्टिकोण का उपयोग किया जाता है। इनमें से दो विकासात्मक धाराओं (मनोविज्ञान से कारक विश्लेषण, और डंकन के माध्यम से समाजशास्त्र से पथ विश्लेषण) के अभिसरण ने सेम के वर्तमान कोर का उत्पादन किया, चूँकि समीकरणों और बहिर्जात (कारण चर) को नियोजित करने वाले अर्थमितीय प्रथाओं के साथ अधिक ओवरलैप है।[14][15]

1970 के दशक के प्रारम्भ में शिक्षात्मक परिक्षण सेवाएं लिस्रेल (LISREL) में विकसित कई कार्यक्रमों में से कार्ल गुस्ताव बल ेस्कॉग पथ-विश्लेषण-शैली समीकरणों (जो समाजशास्त्रियों को राइट और डंकन से उत्तराधिकार में मिला था) के भीतर अंतर्निहित अव्यक्त चर (जिसे मनोवैज्ञानिक कारक विश्लेषण से अव्यक्त कारकों के रूप में जानते थे) )[16] प्रतिरूप के कारक-संरचित भाग में माप त्रुटियां सम्मलित थीं और इस प्रकार अव्यक्त चरों को जोड़ने वाले प्रभावों के माप-त्रुटि-समायोजित अनुमान की अनुमति दी गई थी।

विधि में शक्तिहीनता को अस्पष्ट करने के लिए अव्यवस्थित और भ्रामक शब्दावली का उपयोग किया गया है। विशेष रूप से, पीएलएस-पीए (जिसे PLS-PM के रूप में भी जाना जाता है) को आंशिक न्यूनतम वर्ग प्रतिगमन पीएलएसआर (PLSR) के साथ मिला दिया गया है, जो साधारण न्यूनतम वर्ग प्रतिगमन का विकल्प है और इसका पथ विश्लेषण से कोई लेना-देना नहीं है। पीएलएस-पीए को त्रुटिपूर्ण विधि के रूप में प्रचारित किया गया है जो छोटे डेटासमूह के साथ कार्य करता है जब अन्य अनुमान विफल हो जाते हैं; वास्तव में, यह दिखाया गया है कि इस पद्धति के लिए न्यूनतम आवश्यक प्रतिरूप आकार कई प्रतिगमन में आवश्यक के अनुरूप हैं।[17]

लिस्रेल और पीएलएस-पीए दोनों की परिकल्पना पुनरावृत्त कंप्यूटर एल्गोरिदम के रूप में की गई थी, जिसमें प्रारंभ से ही सुलभ चित्रमय और डेटा प्रविष्टि इंटरफ़ेस बनाने और राइट के (1921) पथ विश्लेषण के विस्तार पर बल दिया गया था। अर्ली काउल्स फाउंडेशन, कोपमैन एंड हूड्स (1953) के एल्गोरिदम पर परिवहन अर्थशास्त्र और इष्टतम रूटिंग से अधिकतम संभावना अनुमान, और क्लोज्ड फॉर्म बीजगणितीय गणनाओं पर केंद्रित समीकरण प्रतिरूप अनुमान पर कार्य करता है, क्योंकि पुनरावृत्त समाधान अविष्कार प्रौद्योगिकी कंप्यूटर से पूर्व के दिनों में सीमित थी।

एंडरसन और रुबिन (1949, 1950) ने ल संरचनात्मक समीकरण के मापदंडों के लिए सीमित जानकारी अधिकतम संभावना अनुमानक विकसित किया, जिसमें अप्रत्यक्ष रूप से दो-चरण न्यूनतम वर्ग अनुमानक और इसके स्पर्शोन्मुख वितरण (एंडरसन, 2005) (फेयरब्रदर, 1999) सम्मलित थे। हेनरी थेल (1953a, 1953b, 1961) द्वारा प्रस्तुत किए गए रैखिक युगपत समीकरणों की प्रणाली में ल संरचनात्मक समीकरण के मापदंडों का अनुमान लगाने की विधि के रूप में दो-चरण कम से कम वर्गों को मूल रूप से प्रस्तावित किया गया था और रॉबर्ट बसमैन (1957) द्वारा कमोबेश स्वतंत्र रूप से प्रस्तुत किया गया था। ) और सरगन टेनिस (1958)। एंडरसन की सीमित जानकारी की अधिकतम संभावना का अनुमान अंततः अविष्कार एल्गोरिथ्म में प्रारम्भ किया गया था, जहां यह अन्य पुनरावृत्त SEM एल्गोरिदम के साथ प्रतिस्पर्धा करता था। इनमें से, 1960 के दशक और 1970 के दशक की प्रारम्भ में दो-चरण न्यूनतम वर्ग अब तक सबसे व्यापक रूप से उपयोग की जाने वाली विधि थी।

1950 के दशक से काउल्स आयोग में प्रतिगमन समीकरण दृष्टिकोण की प्रणालियाँ विकसित की गईं, जो तजालिंग कोपमैन्स के परिवहन मॉडलिंग का विस्तार करती हैं। सीवेल राइट और अन्य सांख्यिकीविदों ने काउल्स (तब शिकागो विश्वविद्यालय में) में पथ विश्लेषण विधियों को बढ़ावा देने का प्रयास किया। शिकागो विश्वविद्यालय के सांख्यिकीविदों ने सामाजिक विज्ञानों के पथ विश्लेषण अनुप्रयोगों के साथ कई दोषों की पहचान की; दोष जो राइट के संदर्भ में जीन संचरण की पहचान करने के लिए महत्वपूर्ण समस्याएँ उत्पन्न नहीं करते थे, किन्तु जिन्होंने सामाजिक विज्ञानों में पीएलएस-पीए और LISREL जैसी पथ विधियों को समस्याग्रस्त बना दिया। फ्रीडमैन (1987) ने पथ विश्लेषण में इन आपत्तियों को संक्षेप में प्रस्तुत किया: सामाजिक विज्ञानों में मात्रात्मक विधि के आसनिकट संदेह और भ्रम के मुख्य कारणों में से कारण धारणाओं, सांख्यिकीय निहितार्थों और नीतिगत दावों के मध्य अंतर करने में विफलता रही है (वोल्ड्स (1987) भी देखें) उत्तर )। राइट के पथ विश्लेषण ने अमेरिकी अर्थमितिविदों के मध्य कभी भी बड़ा अनुसरण नहीं किया, किन्तु हरमन वॉल्ड और उनके छात्र कार्ल गुस्ताव बल ेस्कोग को प्रभावित करने में सफल रहे। बल ेस्कोग के छात्र क्लेस फोर्नेल ने अमेरिका में एलआईएसआरएल को बढ़ावा दिया।

कंप्यूटर में प्रगति ने नौसिखियों के लिए जटिल, असंरचित समस्याओं में बड़े डेटासमूह के कंप्यूटर-गहन विश्लेषण में संरचनात्मक समीकरण विधियों को प्रारम्भ करना आसान बना दिया। सबसे लोकप्रिय समाधान तकनीकें एल्गोरिदम के तीन वर्गों में आती हैं: (1) सामान्य न्यूनतम वर्ग एल्गोरिदम प्रत्येक पथ पर स्वतंत्र रूप से प्रारम्भ होते हैं, जैसे तथाकथित पीएलएस पथ विश्लेषण पैकेज में प्रारम्भ होते हैं जो ओएलएस के साथ अनुमान लगाते हैं; (2) वोल्ड और उनके छात्र कार्ल बल ेस्कॉग द्वारा एलआईएसआरएल, एएमओएस और ईक्यूएस में प्रारम्भ किए गए मौलिक कार्य से विकसित सहप्रसरण विश्लेषण एल्गोरिदम; और (3) साथ समीकरण प्रतिगमन एल्गोरिदम काउल्स आयोग में तजालिंग कोपमैन्स द्वारा विकसित किया गया।

मोती[18]SEM को रैखिक से गैर पैरामीट्रिक प्रतिरूप तक विस्तारित किया है, और समीकरणों के कारण और प्रतितथ्यात्मक व्याख्याओं का प्रस्ताव दिया है। उदाहरण के लिए, समीकरण के तर्कों से चर Z को छोड़कर यह प्रमाणित करता है कि आश्रित चर बहिष्कृत चर पर हस्तक्षेप से स्वतंत्र है, बार जब हम शेष तर्कों को स्थिर रखते हैं। Nonparametric SEMs समीकरणों के रूप में या त्रुटि शर्तों के वितरण के लिए कोई प्रतिबद्धता किए बिना कुल, प्रत्यक्ष और अप्रत्यक्ष प्रभावों के अनुमान की अनुमति देते हैं। यह गैर-रेखीय अंतःक्रियाओं की उपस्थिति में श्रेणीबद्ध चरों को सम्मलित करने वाली प्रणालियों के लिए मध्यस्थता विश्लेषण का विस्तार करता है। बोलेन और पर्ल[19]एसईएम की कारण व्याख्या के इतिहास का सर्वेक्षण करें और यह क्यों भ्रम और विवादों का स्रोत बन गया है।

SEM पथ विश्लेषण विधियाँ अपनी पहुँच के कारण सामाजिक विज्ञानों में लोकप्रिय हैं; पैक किए गए कंप्यूटर प्रोग्राम शोधकर्ताओं को प्रयोगात्मक डिजाइन और नियंत्रण, प्रभाव और प्रतिरूप आकार, और कई अन्य कारकों को समझने की असुविधा के बिना परिणाम प्राप्त करने की अनुमति देते हैं जो उत्तम शोध डिजाइन का हिस्सा हैं।[citation needed] समर्थकों का कहना है कि यह प्राकृतिक विज्ञानों में अपनाए जाने की तुलना में - विशेष रूप से मनोविज्ञान और सामाजिक संपर्क में - कई वास्तविक दुनिया की घटनाओं की समग्र, और कम स्पष्ट रूप से कारण, व्याख्या को दर्शाता है; आलोचकों का विचार है कि प्रयोगात्मक नियंत्रण की इस कमी के कारण कई त्रुटिपूर्ण निष्कर्ष निकाले गए हैं।[citation needed]

SEM के निर्देशित नेटवर्क प्रतिरूप में दिशा वास्तविकता के बारे में अनुमानित कारण-प्रभाव धारणाओं से उत्पन्न होती है। सामाजिक संपर्क और कलाकृतियाँ अधिकांशतः एपिफेनोमेना होती हैं - द्वितीयक घटनाएँ जो सरलता तौर पर कारण कारकों से जुड़ती हैं। फिजियोलॉजिकल एपिफेनोमेनन का उदाहरण है, उदाहरण के लिए, 100 मीटर स्प्रिंट को पूरा करने का समय। व्यक्ति अपनी स्प्रिंट गति को 12 सेकंड से 11 सेकंड तक सुधारने में सक्षम हो सकता है, किन्तु आहार, दृष्टिकोण, मौसम इत्यादि जैसे किसी भी प्रत्यक्ष कारक कारकों में सुधार को श्रेय देना जटिल होगा। स्प्रिंट समय में 1 सेकंड का सुधार है एपिफेनोमेनन - कई भिन्न -भिन्न कारकों की बातचीत का समग्र उत्पाद।

SEM के लिए सामान्य दृष्टिकोण

चूँकि SEM परिवार में प्रत्येक प्रौद्योगिकी भिन्न है, निम्नलिखित स्वरूप कई SEM विधियों के लिए सामान्य हैं, क्योंकि इसे एलेक्स लियू जैसे कई SEM विद्वानों द्वारा 4E ढांचे के रूप में संक्षेपित किया जा सकता है, जो कि 1) समीकरण (प्रतिरूप या समीकरण विनिर्देश), 2 ) मुक्त मापदंडों का अनुमान, 3) प्रतिरूप और प्रतिरूप फिट का मूल्यांकन, 4) स्पष्टीकरण और संचार, साथ ही परिणामों का निष्पादन।

प्रतिरूप विनिर्देश

SEM में प्रतिरूप के दो मुख्य घटक प्रतिष्ठित हैं: अंतर्जात और बहिर्जात चर के मध्य संभावित कारण निर्भरता दिखाने वाला संरचनात्मक मॉडल, और अव्यक्त चर और उनके संकेतकों के मध्य संबंध दिखाने वाला माप मॉडल। अन्वेषी और पुष्टि कारक विश्लेषण मॉडल, उदाहरण के लिए, केवल माप भाग होते हैं, जबकि पथ विश्लेषण (सांख्यिकी) को एसईएम के रूप में देखा जा सकता है जिसमें केवल संरचनात्मक भाग होता है।

प्रतिरूप में पथों को निर्दिष्ट करने में, मॉडलर दो प्रकार के संबंधों को प्रस्तुत कर सकता है: (1) मुक्त मार्ग, जिसमें परिकल्पित कारण (वास्तव में प्रतितथ्यात्मक) चर के मध्य संबंधों का परीक्षण किया जाता है, और इसलिए भिन्नता के लिए 'मुक्त' छोड़ दिया जाता है, और (2) ) वेरिएबल्स के मध्य संबंध जिनका पूर्व से ही अनुमानित संबंध है, सामान्यतः पिछले अध्ययनों पर आधारित होते हैं, जो प्रतिरूप में 'निश्चित' होते हैं।

मॉडलर अधिकांशतः सैद्धांतिक रूप से प्रशंसनीय प्रतिरूप का समूह निर्दिष्ट करेगा जिससे कि यह आकलन किया जा सके कि प्रस्तावित प्रतिरूप संभावित प्रतिरूप के समूह में सबसे अच्छा है या नहीं। मॉडलर को न केवल प्रतिरूप के निर्माण के लिए सैद्धांतिक कारणों के लिए खाता होना चाहिए, जबकि मॉडलर को डेटा बिंदुओं की संख्या और प्रतिरूप की पहचान करने के लिए अनुमान लगाने वाले मापदंडों की संख्या को भी ध्यान में रखना चाहिए।

पहचाना गया प्रतिरूप प्रतिरूप है जहां विशिष्ट पैरामीटर मान विशिष्ट रूप से प्रतिरूप (पुनरावर्ती परिभाषा) की पहचान करता है, और कोई भिन्न पैरामीटर मान द्वारा कोई अन्य समकक्ष सूत्रीकरण नहीं दिया जा सकता है। डेटा बिंदु देखे गए अंकों वाला चर है, जैसे चर जिसमें किसी प्रश्न पर स्कोर होता है या उत्तरदाताओं द्वारा कार खरीदने की संख्या। पैरामीटर ब्याज का मूल्य है, जो बहिर्जात और अंतर्जात चर या कारक लोडिंग ( संकेतक और उसके कारक के मध्य प्रतिगमन गुणांक) के मध्य प्रतिगमन गुणांक हो सकता है। यदि अनुमानित मापदंडों की संख्या से कम डेटा बिंदु हैं, तो परिणामी प्रतिरूप अज्ञात है, क्योंकि प्रतिरूप में सभी भिन्नताओं के लिए बहुत कम संदर्भ बिंदु हैं। समाधान पथों में से को शून्य तक सीमित करना है, जिसका अर्थ है कि यह अब प्रतिरूप का हिस्सा नहीं है।

मुक्त मापदंडों का अनुमान

पैरामीटर अनुमान वास्तविक सहप्रसरण मैट्रिक्स की तुलना करके किया जाता है जो चर और सर्वोत्तम फिटिंग प्रतिरूप के अनुमानित सहप्रसरण मैट्रिक्स के मध्य संबंधों का प्रतिनिधित्व करता है। यह अपेक्षा-अधिकतमकरण एल्गोरिथ्म के माध्यम से संख्यात्मक अधिकतमकरण के माध्यम से प्राप्त किया जाता है। अपेक्षा-अधिकतम मानदंड का अधिकतमकरण जैसा कि अधिकतम संभावना अनुमान, अर्ध-अधिकतम संभावना अनुमान, भारित कम से कम वर्ग या असमान रूप से वितरण-मुक्त विधियों द्वारा प्रदान किया जाता है। यह अधिकांशतः विशेष एसईएम विश्लेषण कार्यक्रम का उपयोग करके पूरा किया जाता है, जिनमें से कई उपस्तिथ हैं।


प्रतिरूप और प्रतिरूप फिट का मूल्यांकन

प्रतिरूप का अनुमान लगाने के पश्चात , विश्लेषक प्रतिरूप की व्याख्या करना चाहेंगे। अनुमानित पथों को पथ प्रतिरूप के रूप में सारणीबद्ध और/या रेखांकन के रूप में प्रस्तुत किया जा सकता है। पथ विश्लेषण (सांख्यिकी)#पथ अनुरेखण नियमों (पथ विश्लेषण (सांख्यिकी) देखें) का उपयोग करके चरों के प्रभाव का आकलन किया जाता है।

यह निर्धारित करने के लिए अनुमानित प्रतिरूप के फिट की अन्वेषण करना महत्वपूर्ण है कि यह डेटा को कितनी उत्तम प्रकार प्रतिरूप करता है। एसईएम मॉडलिंग में यह बुनियादी कार्य है, प्रतिरूप को स्वीकार या अस्वीकार करने के लिए आधार तैयार करना और अधिक सामान्यतः, प्रतिस्पर्धी प्रतिरूप को दूसरे पर स्वीकार करना। एसईएम कार्यक्रमों के आउटपुट में प्रतिरूप में चरों के मध्य अनुमानित संबंधों के आव्यूह सम्मलित हैं। फिट का आकलन अनिवार्य रूप से गणना करता है कि अनुमानित डेटा वास्तविक डेटा में संबंधों वाले मैट्रिसेस के समान कैसे हैं।

इन उद्देश्यों के लिए औपचारिक सांख्यिकीय परीक्षण और फिट इंडेक्स विकसित किए गए हैं। अनुमानित प्रतिरूप के भीतर प्रतिरूप के व्यक्तिगत मापदंडों की भी अन्वेषण की जा सकती है जिससे कि यह देखा जा सके कि प्रस्तावित प्रतिरूप ड्राइविंग सिद्धांत में कितनी उत्तम प्रकार फिट बैठता है। अधिकांश, चूँकि सभी नहीं, आकलन विधियां प्रतिरूप के ऐसे परीक्षणों को संभव बनाती हैं।

निश्चित रूप से जैसा कि सभी सांख्यिकीय परिकल्पना परीक्षण में होता है, (SEM) प्रतिरूप परीक्षण इस धारणा पर आधारित होते हैं कि सही और पूर्ण प्रासंगिक डेटा को प्रतिरूप किया गया है। (SEM) साहित्य में, फिट की चर्चा ने विभिन्न फिट सूचकांकों और परिकल्पना परीक्षणों के त्रुटिहीन अनुप्रयोग पर विभिन्न अनुशंसाओं को जन्म दिया है।

फिट का आकलन करने के लिए भिन्न -भिन्न दृष्टिकोण हैं। मॉडलिंग के लिए पारंपरिक दृष्टिकोण अशक्त परिकल्पना से प्रारंभ होता है, अधिक उदार प्रतिरूप (अर्थात कम मुक्त मापदंडों वाले) को पुरस्कृत करते हुए, अन्य जैसे कि ैके सूचना मानदंड जो इस बात पर ध्यान केंद्रित करते हैं कि संतृप्त प्रतिरूप से फिट किए गए मान कितने कम हैं।[citation needed] (अर्थात वे कितनी उत्तम प्रकार से मापा मूल्यों को पुन: उत्पन्न करते हैं), उपयोग किए गए मुक्त मापदंडों की संख्या को ध्यान में रखते हुए। क्योंकि फिट के विभिन्न उपाय प्रतिरूप के फिट के विभिन्न तत्वों को पकड़ते हैं, इसलिए विभिन्न फिट उपायों के चयन की रिपोर्ट करना उचित है। उपयुक्त उपायों की व्याख्या के लिए दिशानिर्देश (अर्थात , कटऑफ स्कोर), नीचे सूचीबद्ध लोगों सहित, (SEM) शोधकर्ताओं के मध्य बहुत बहस का विषय हैं।[20]

फिट के कुछ अधिक सामान्य रूप से उपयोग किए जाने वाले उपायों में सम्मलित हैं

  • ची-स्क्वेर्ड परीक्षण|ची-स्क्वेर्ड टेस्ट
    • कई अन्य फिट उपायों की गणना में उपयोग किए जाने वाले फिट का मौलिक उपाय। संकल्पनात्मक रूप से यह प्रतिरूप आकार का कार्य है और देखे गए सहप्रसरण मैट्रिक्स और प्रतिरूप सहप्रसरण मैट्रिक्स के मध्य का अंतर है।
  • ाइके सूचना मानदंड (एआईसी)
    • रिश्तेदार प्रतिरूप फिट का परीक्षण: पसंदीदा प्रतिरूप सबसे कम एआईसी मूल्य वाला है।
    • जहां k सांख्यिकीय प्रतिरूप में मापदंडों की संख्या है, और L प्रतिरूप की संभावना का अधिकतम मूल्य है।
  • सन्निकटन का मूल माध्य वर्ग त्रुटि (RMSEA)
    • फ़िट इंडेक्स जहां शून्य का मान सर्वोत्तम फ़िट इंगित करता है।[21] जबकि आरएमएसईए का उपयोग करके करीबी फिट का निर्धारण करने के लिए दिशानिर्देश अत्यधिक विवादित है,[22] अधिकांश शोधकर्ता इस बात से सहमत हैं कि .1 या अधिक का RMSEA खराब फ़िट इंगित करता है।[23][24]* मानकीकृत रूट माध्य चुकता अवशिष्ट (SRMR)
    • SRMR लोकप्रिय संपूर्ण फ़िट संकेतक है। हू और बेंटलर (1999) ने उत्तम फिट के लिए दिशानिर्देश के रूप में .08 या उससे छोटे का विचार दिया।[25] क्लाइन (2011) ने उत्तम फिट के लिए दिशानिर्देश के रूप में .1 या उससे कम का विचार दिया।
  • तुलनात्मक फिट इंडेक्स (सीएफआई)
    • बेसलाइन तुलनाओं की अन्वेषण में, सीएफआई डेटा में सहसंबंधों के औसत आकार पर बड़े भाग पर निर्भर करता है। यदि चरों के मध्य औसत सहसंबंध अधिक नहीं है, तो CFI बहुत अधिक नहीं होगा। .95 या उच्चतर का सीएफआई मूल्य वांछनीय है।[25]

फिट के प्रत्येक माप के लिए, प्रतिरूप और डेटा के मध्य अच्छे-पर्याप्त फिट का प्रतिनिधित्व करने वाले निर्णय को अन्य प्रासंगिक कारकों जैसे प्रतिरूप आकार, कारकों के संकेतकों का अनुपात और प्रतिरूप की समग्र जटिलता को प्रतिबिंबित करना चाहिए। उदाहरण के लिए, बहुत बड़े नमूने ची-स्क्वेर्ड परीक्षण को अत्यधिक संवेदनशील बनाते हैं और मॉडल-डेटा फ़िट की कमी का संकेत देने की अधिक संभावना रखते हैं। [26]

प्रतिरूप संशोधन

फिट को बेहतर बनाने के लिए प्रतिरूप को संशोधित करने की आवश्यकता हो सकती है, जिससे चर के मध्य सबसे अधिक संभावित संबंधों का अनुमान लगाया जा सके। कई कार्यक्रम संशोधन सूचकांक प्रदान करते हैं जो मामूली संशोधनों का मार्गदर्शन कर सकते हैं। संशोधन सूचकांक χ² में परिवर्तन की रिपोर्ट करते हैं जो निश्चित मापदंडों को मुक्त करने के परिणामस्वरूप होता है: सामान्यतः, इसलिए प्रतिरूप के लिए पथ जोड़ना जो वर्तमान में शून्य पर समूह है। प्रतिरूप फिट में सुधार करने वाले संशोधनों को प्रतिरूप में किए जा सकने वाले संभावित परिवर्तनों के रूप में फ़्लैग किया जा सकता है। प्रतिरूप में संशोधन, विशेष रूप से संरचनात्मक मॉडल, सही होने का प्रमाणित करने वाले सिद्धांत में परिवर्तन हैं। इसलिए संशोधनों को परीक्षण किए जा रहे सिद्धांत के संदर्भ में समझ में आना चाहिए, या उस सिद्धांत की सीमाओं के रूप में स्वीकार किया जाना चाहिए। माप प्रतिरूप में परिवर्तन प्रभावी रूप से प्रमाणित करते हैं कि आइटम / डेटा सिद्धांत द्वारा निर्दिष्ट अव्यक्त चर के अशुद्ध संकेतक हैं।[27]

मॉडलों को संशोधन सूचकांकों द्वारा नेतृत्व नहीं किया जाना चाहिए, जैसा कि मैककलम (1986) ने प्रदर्शित किया: अनुकूल परिस्थितियों में भी, विनिर्देश खोजों से उत्पन्न होने वाले मॉडलों को सावधानी के साथ देखा जाना चाहिए।[28]


प्रतिरूप आकार और शक्ति

जबकि शोधकर्ता इस बात से सहमत हैं कि (SEM) का उपयोग करके पर्याप्त सांख्यिकीय शक्ति और त्रुटिहीन अनुमान प्रदान करने के लिए बड़े प्रतिरूप आकार की आवश्यकता होती है, पर्याप्त प्रतिरूप आकार निर्धारित करने के लिए उपयुक्त विधि पर कोई आम सहमति नहीं है।[29] [30]सामान्यतः, प्रतिरूप आकार निर्धारित करने के लिए विचारों में प्रति पैरामीटर टिप्पणियों की संख्या, फिट इंडेक्स के लिए पर्याप्त रूप से प्रदर्शन करने के लिए आवश्यक टिप्पणियों की संख्या और स्वतंत्रता की प्रति डिग्री टिप्पणियों की संख्या सम्मलित होती है।[29] शोधकर्ताओं ने सिमुलेशन अध्ययनों के आधार पर दिशानिर्देश प्रस्तावित किए हैं,[31]प्रस्तुत ेवर अनुभव,[32]और गणितीय सूत्र।[30][33]

(SEM) परिकल्पना परीक्षण में विशेष महत्व और शक्ति प्राप्त करने के लिए प्रतिरूप आकार की आवश्यकताएं उसी प्रतिरूप के लिए समान होती हैं जब परीक्षण के लिए तीन एल्गोरिदम (PLS-PA, LISREL या प्रतिगमन समीकरणों की प्रणाली) का उपयोग किया जाता है।[citation needed]

स्पष्टीकरण और संचार

इसके पश्चात मॉडलों के समूह की व्याख्या की जाती है जिससे कि सर्वोत्तम फिटिंग प्रतिरूप के आधार पर निर्माण के बारे में प्रमाणित किया जा सके।

प्रयोग या समय-आदेशित अध्ययन किए जाने पर भी कारणता का प्रमाणित करते समय सदैव सावधानी बरतनी चाहिए। शब्द कारणात्मक प्रतिरूप को ऐसे प्रतिरूप के रूप में समझा जाना चाहिए जो कारण संबंधी मान्यताओं को व्यक्त करता है, आवश्यक नहीं कि ऐसा प्रतिरूप हो जो मान्य कारण निष्कर्ष उत्पन्न करता हो। कई समय बिंदुओं पर डेटा त्र करना और प्रायोगिक या अर्ध-प्रायोगिक डिजाइन का उपयोग करने से कुछ प्रतिद्वंद्वी परिकल्पनाओं को दूर करने में सहायता मिल सकती है, किन्तु यादृच्छिक प्रयोग भी ऐसे सभी खतरों से इंकार नहीं कर सकता है। कारण परिकल्पना के अनुरूप प्रतिरूप द्वारा अच्छा फिट अनिवार्य रूप से विरोधी कारण परिकल्पना के अनुरूप दूसरे प्रतिरूप द्वारा समान रूप से अच्छा फिट होता है। कोई भी शोध डिजाइन, चाहे कितना भी चतुर क्यों न हो, इस प्रकार की प्रतिद्वंद्वी परिकल्पनाओं को भिन्न करने में सहायता कर सकता है, इंटरवेंशनल प्रयोगों को छोड़कर।[18]

किसी भी विज्ञान की तरह, पश्चात की प्रतिकृति और संभवतः संशोधन प्रारंभिक अविष्कार से आगे बढ़ेंगे।

उन्नत उपयोग

  • मापन व्युत्क्रम
  • ाधिक समूह मॉडलिंग: यह ऐसी प्रौद्योगिकी है जो कई मॉडलों के संयुक्त अनुमान की अनुमति देती है, प्रत्येक भिन्न -भिन्न उप-समूहों के साथ। अनुप्रयोगों में व्यवहार आनुवंशिकी, और समूहों के मध्य मतभेदों का विश्लेषण सम्मलित है (जैसे, लिंग, संस्कृतियां, विभिन्न भाषाओं में लिखे गए परीक्षण प्रपत्र आदि)।
  • अव्यक्त विकास मॉडलिंग
  • अरैखिक मिश्रित प्रभाव मॉडल
  • श्रेणीबद्ध/बहुस्तरीय मॉडल; आइटम प्रतिक्रिया सिद्धांत मॉडल
  • मिश्रण प्रतिरूप (अव्यक्त वर्ग) SEM
  • वैकल्पिक अनुमान और परीक्षण तकनीक
  • दृढ़ अनुमान
  • सर्वेक्षण प्रतिरूप विश्लेषण
  • मल्टी-मेथड मल्टी-ट्रेट मॉडल
  • संरचनात्मक समीकरण प्रतिरूप पेड़

एसईएम-विशिष्ट सॉफ़्टवेयर

संरचनात्मक समीकरण प्रतिरूप को फ़िट करने के लिए कई सॉफ़्टवेयर पैकेज उपस्तिथ हैं। LISREL ऐसा प्रथम सॉफ्टवेयर था, जो प्रारम्भ में 1970 के दशक में निरंतर किया गया था।[16]शोधकर्ताओं के मध्य अधिकांशतः उपयोग किए जाने वाले सॉफ्टवेयर कार्यान्वयन में एमप्लस, आआर (प्रोग्रामिंग भाषा) पैकेज लावान सम्मलित हैं[34]और sem, LISREL, OpenMx, SPSS AMOS, और Stata[35] बारबरा एम. बायरन ने बहुभिन्नरूपी प्रायोगिक मनोविज्ञान का समाज के मल्टीवीरेट एप्लीकेशन बुक सीरीज के भाग के रूप में इन सॉफ्टवेयरों की किस्म का उपयोग करने के लिए कई निर्देशात्मक पुस्तकें प्रकाशित कीं।[36] विद्वान इसे रिपोर्ट करने के लिए अच्छा अभ्यास मानते हैं कि एसईएम विश्लेषण के लिए कौन से सॉफ़्टवेयर पैकेज और संस्करण का उपयोग किया गया था क्योंकि उनके निकट भिन्न -भिन्न क्षमताएं हैं और समान नामित तकनीकों को करने के लिए थोड़ा भिन्न विधि का उपयोग कर सकते हैं।[37]

यह भी देखें

संदर्भ

  1. Boslaugh, Sarah; McNutt, Louise-Anne (2008). "Structural Equation Modeling". Encyclopedia of Epidemiology. doi:10.4135/9781412953948.n443. hdl:2022/21973. ISBN 978-1-4129-2816-8.
  2. Shelley, Mack C (2006). "Structural Equation Modeling". शैक्षिक नेतृत्व और प्रशासन का विश्वकोश. doi:10.4135/9781412939584.n544. ISBN 978-0-7619-3087-7.
  3. 3.0 3.1 {{Cite book|last=Kline|first=Rex B. |title=आधारभूत समीकरण मोडलिंग के सिद्धांत एवं व्यवहार|date=2016 |isbn=978-1-4625-2334-4|edition=4th |location=New York|oclc=934184322}
  4. Bollen, Kenneth A. (1989). गुप्त चरों के साथ स्ट्रक्चरल समीकरण. New York: Wiley. ISBN 0-471-01171-1. OCLC 18834634.
  5. Kaplan, David (2009). Structural equation modeling: foundations and extensions (2nd ed.). Los Angeles: SAGE. ISBN 978-1-4129-1624-0. OCLC 225852466.
  6. Curran, Patrick J. (2003-10-01). "Have Multilevel Models Been Structural Equation Models All Along?". Multivariate Behavioral Research. 38 (4): 529–569. doi:10.1207/s15327906mbr3804_5. ISSN 0027-3171. PMID 26777445. S2CID 7384127.
  7. Salkind, Neil J. (2007). "Intelligence Tests". Encyclopedia of Measurement and Statistics. doi:10.4135/9781412952644.n220. ISBN 978-1-4129-1611-0.
  8. MacCallum & Austin 2000, p. 209.
  9. Wright, S. (1920-06-01). "गिनी-सूअरों के पाइबल्ड पैटर्न का निर्धारण करने में आनुवंशिकता और पर्यावरण का सापेक्ष महत्व". Proceedings of the National Academy of Sciences (in English). 6 (6): 320–332. Bibcode:1920PNAS....6..320W. doi:10.1073/pnas.6.6.320. ISSN 0027-8424. PMC 1084532. PMID 16576506.
  10. Wright, Sewall (1921). "जर्नल ऑफ एग्रीकल्चरल रिसर्च". जर्नल ऑफ एग्रीकल्चरल रिसर्च. 20 (1): 557–585 – via USDA.
  11. Wolfle, Lee M. (1999). "Sewall wright on the method of path coefficients: An annotated bibliography". Structural Equation Modeling (in English). 6 (3): 280–291. doi:10.1080/10705519909540134. ISSN 1070-5511.
  12. Wright, Sewall (1934). "पथ गुणांक की विधि". The Annals of Mathematical Statistics. 5 (3): 161–215. doi:10.1214/aoms/1177732676. ISSN 0003-4851. JSTOR 2957502.
  13. Duncan, Otis Dudley (1975). संरचनात्मक समीकरण मॉडल का परिचय. New York: Academic Press. ISBN 0-12-224150-9. OCLC 1175858.
  14. Christ, Carl F. (1994). "The Cowles Commission's Contributions to Econometrics at Chicago, 1939-1955". Journal of Economic Literature. 32 (1): 30–59. ISSN 0022-0515. JSTOR 2728422.
  15. Westland, J. Christopher (2015). Structural Equation Modeling: From Paths to Networks. New York: Springer.
  16. 16.0 16.1 Jöreskog, Karl Gustav; van Thillo, Mariella (1972). "LISREL: A General Computer Program for Estimating a Linear Structural Equation System Involving Multiple Indicators of Unmeasured Variables" (PDF). Research Bulletin: Office of Education. ETS-RB-72-56 – via US Government.
  17. Kock, Ned; Hadaya, Pierre (2018). "Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods". Information Systems Journal. 28: 227–261. doi:10.1111/isj.12131. S2CID 3733557.
  18. 18.0 18.1 Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press. ISBN 978-0-521-77362-1.
  19. Bollen, Kenneth A; Pearl, Judea (2013). "Eight Myths About Causality and Structural Equation Models". Handbook of Causal Analysis for Social Research. Handbooks of Sociology and Social Research. pp. 301–28. doi:10.1007/978-94-007-6094-3_15. ISBN 978-94-007-6093-6.
  20. MacCallum & Austin 2000, p. 218-219.
  21. Kline 2011, p. 205.
  22. Kline 2011, p. 206.
  23. Hu & Bentler 1999, p. 11.
  24. Browne, M. W.; Cudeck, R. (1993). "Alternative ways of assessing model fit". In Bollen, K. A.; Long, J. S. (eds.). Testing structural equation models. Newbury Park, CA: Sage.
  25. 25.0 25.1 Hu & Bentler 1999, p. 27.
  26. Kline 2011, p. 201.
  27. Loehlin, J. C. (2004). Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis. Psychology Press.
  28. MacCallum, Robert (1986). "Specification searches in covariance structure modeling". Psychological Bulletin. 100: 107–120. doi:10.1037/0033-2909.100.1.107.
  29. 29.0 29.1 Quintana & Maxwell 1999, p. 499.
  30. 30.0 30.1 Westland, J. Christopher (2010). "Lower bounds on sample size in structural equation modeling". Electron. Comm. Res. Appl. 9 (6): 476–487. doi:10.1016/j.elerap.2010.07.003.
  31. Chou, C. P.; Bentler, Peter (1995). "Estimates and tests in structural equation modeling". In Hoyle, Rick (ed.). Structural equation modeling: Concepts, issues, and applications. Thousand Oaks, CA: Sage. pp. 37–55.
  32. Bentler, P. M; Chou, Chih-Ping (2016). "Practical Issues in Structural Modeling". Sociological Methods & Research. 16 (1): 78–117. doi:10.1177/0049124187016001004. S2CID 62548269.
  33. MacCallum, Robert C; Browne, Michael W; Sugawara, Hazuki M (1996). "Power analysis and determination of sample size for covariance structure modeling". Psychological Methods. 1 (2): 130–49. doi:10.1037/1082-989X.1.2.130.
  34. Rosseel, Yves (2012-05-24). "lavaan: An R Package for Structural Equation Modeling". Journal of Statistical Software. 48 (2): 1–36. doi:10.18637/jss.v048.i02. Retrieved 27 January 2021.
  35. Narayanan, A. (2012-05-01). "स्ट्रक्चरल इक्वेशन मॉडलिंग के लिए आठ सॉफ्टवेयर पैकेज की समीक्षा". The American Statistician. 66 (2): 129–138. doi:10.1080/00031305.2012.708641. ISSN 0003-1305. S2CID 59460771.
  36. "Barbara Byrne Award for Outstanding Book or Edited Volume | SMEP". smep.org. Retrieved 2022-10-25.
  37. Kline 2011, p. 79-88.


ग्रन्थसूची


अग्रिम पठन


बाहरी संबंध