अभिगृहीत सिद्धांत

From Vigyanwiki

गणित में, नियतत्व की अभिधारणा (संक्षिप्त रूप में AD) 1962 में Jan Mycielski और Hugo Steinhaus द्वारा प्रस्तुत सेट सिद्धांत के लिए एक संभावित स्वयंसिद्ध है। यह लंबाई ω (क्रमिक संख्या)|ω के कुछ दो-व्यक्ति सांस्थितिक खेलों को संदर्भित करता है। AD बताता है कि निर्धारण के एक स्वयंसिद्ध का हर खेल # खेल के प्रकार जो निर्धारित होते हैं, निर्धारित खेल होते हैं; यानी, दो खिलाड़ियों में से एक के पास जीतने की रणनीति है।

AD के लिए स्टाइनहॉस जान माइसिल्स्की की प्रेरणा इसके दिलचस्प परिणाम थे, और सुझाव दिया कि AD एक सेट सिद्धांत के सबसे छोटे प्राकृतिक मॉडल L(R) में सत्य हो सकता है, जो पसंद के स्वयंसिद्ध (AC) के केवल एक कमजोर रूप को स्वीकार करता है, लेकिन इसमें सभी वास्तविक शामिल हैं। संख्या और सभी क्रम संख्या। AD के कुछ परिणाम प्रमेय से अनुसरण करते हैं जो पहले स्टीफन बानाच और स्टैनिस्लाव मजूर और मॉर्टन डेविस द्वारा सिद्ध किए गए थे। Mycielski और Stanislaw Świerczkowski ने एक और योगदान दिया: AD का अर्थ है कि वास्तविक संख्याओं के सभी सेट Lebesgue मापने योग्य हैं। बाद में डोनाल्ड ए. मार्टिन और अन्य ने अधिक महत्वपूर्ण परिणाम साबित किए, विशेष रूप से वर्णनात्मक समुच्चय सिद्धांत में। 1988 में, जॉन आर. स्टील और डब्ल्यू. ह्यूग वुडिन ने अनुसंधान की एक लंबी श्रृंखला समाप्त की। के अनुरूप कुछ बेशुमार कार्डिनल संख्याओं के अस्तित्व को मानते हुए , उन्होंने Mycielski और Steinhaus के मूल अनुमान को सिद्ध किया कि L(R) में AD सत्य है।

खेल के प्रकार जो निर्धारित होते हैं

नियतत्व का स्वयंसिद्ध निम्नलिखित विशिष्ट रूप के खेलों को संदर्भित करता है: बायर स्पेस (सेट थ्योरी) ω के एक उपसमुच्चय A पर विचार करेंप्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का ω। दो खिलाड़ी, 'I' और 'II' बारी-बारी से प्राकृतिक संख्याएँ चुनते हैं

एन0, एन1, एन2, एन3, ...

असीम रूप से कई चालों के बाद, एक क्रम उत्पन्न होता है। प्लेयर I गेम जीतता है अगर और केवल अगर उत्पन्न अनुक्रम का एक तत्व है। नियतत्व की कसौटी यह कथन है कि ऐसे सभी खेल निर्धारित होते हैं।

सभी खेलों को निर्धारित साबित करने के लिए दृढ़ संकल्प के सिद्धांत की आवश्यकता नहीं होती है। यदि समुच्चय क्लोपेन समुच्चय है, तो खेल अनिवार्य रूप से एक परिमित खेल है, और इसलिए निर्धारित है। इसी तरह, अगर 'ए' एक बंद सेट है, तो खेल निर्धारित किया जाता है। यह 1975 में डोनाल्ड ए मार्टिन द्वारा दिखाया गया था कि खेल जिसका जीतने वाला सेट बोरेल सेट है, निर्धारित किया जाता है। यह पर्याप्त रूप से बड़े कार्डिनल्स के अस्तित्व से अनुसरण करता है कि जीतने वाले सेट के साथ सभी गेम एक प्रक्षेपण सेट निर्धारित होते हैं (प्रोजेक्टिव निर्धारणा देखें), और यह कि एडी एल (आर) में है।

नियतत्व के स्वयंसिद्ध का तात्पर्य है कि वास्तविक रेखा के प्रत्येक उप-स्थान X के लिए # एक स्थलीय स्थान के रूप में, बनच-मजूर खेल BM(X) निर्धारित किया जाता है (और इसलिए प्रत्येक सेट का रियल के पास बायर की संपत्ति है)।

पसंद के स्वयंसिद्ध के साथ निर्धारण के स्वयंसिद्ध की असंगति

पसंद के स्वयंसिद्ध की धारणा के तहत, हम निर्धारण के स्वयंसिद्ध के लिए एक प्रति-उदाहरण बनाते हैं। एक ω-गेम G में सभी प्रथम खिलाड़ी रणनीतियों के सेट S1 में वही प्रमुखता है जो कॉन्टिनम की कार्डिनैलिटी है। सभी दूसरे खिलाड़ी रणनीतियों के सेट S2 के लिए भी यही सच है। बता दें कि SG G में सभी संभावित अनुक्रमों का सेट है, और A SG के अनुक्रमों का सबसेट है जो पहले खिलाड़ी को जीत दिलाते हैं। पसंद के स्वयंसिद्ध के साथ हम सातत्य को अच्छी तरह से आदेश दे सकते हैं, और हम ऐसा इस तरह से कर सकते हैं कि किसी भी उचित प्रारंभिक भाग में सातत्य की तुलना में कम कार्डिनैलिटी हो। हम S1 और S2 दोनों को अनुक्रमित करने के लिए प्राप्त सुव्यवस्थित सेट J का उपयोग करते हैं, और A का निर्माण इस तरह करते हैं कि यह एक प्रति उदाहरण होगा।

हम खाली समुच्चय A और B से शुरू करते हैं। मान लीजिए α J S1 और S2 में रणनीतियों का सूचकांक हो। हमें पहले खिलाड़ी की सभी रणनीतियों S1 = {s1(α)} और दूसरे खिलाड़ी की सभी रणनीतियों S2 = {s2(α)} पर विचार करने की आवश्यकता है ताकि यह सुनिश्चित हो सके कि प्रत्येक रणनीति के लिए दूसरे खिलाड़ी की रणनीति है जो जीतता है उसके खिलाफ। विचार किए गए खिलाड़ी की प्रत्येक रणनीति के लिए हम एक क्रम उत्पन्न करेंगे जो दूसरे खिलाड़ी को जीत दिलाएगा। मान लीजिए कि वह समय है जिसकी धुरी की लंबाई ℵ है0 और जिसका उपयोग प्रत्येक खेल अनुक्रम के दौरान किया जाता है। हम α पर ट्रांसफिनिट रिकर्सन द्वारा काउंटर उदाहरण ए बनाते हैं:

  1. पहले खिलाड़ी की रणनीति s1(α) पर विचार करें।
  2. इस रणनीति को ω-खेल पर लागू करें, (पहले खिलाड़ी की रणनीति s1(α) के साथ) एक अनुक्रम {a(1), b(2), a(3), b(4),..., a(t), b(t+1),...}, जो A से संबंधित नहीं है। यह संभव है, क्योंकि {b(2), b(4), b(6) के लिए विकल्पों की संख्या, ...} में निरंतरता के समान ही कार्डिनैलिटी है, जो कि उचित प्रारंभिक भाग की कार्डिनैलिटी से बड़ी है { β जे | बी जे का α}।
  3. इस क्रम को B में जोड़ें (यदि यह पहले से ही B में नहीं है), यह इंगित करने के लिए कि s1(α) हारता है ({b(2), b(4), b(6), ...} पर)।
  4. दूसरे खिलाड़ी की रणनीति s2(α) पर विचार करें।
  5. इस रणनीति को एक ω-खेल पर लागू करें, (दूसरे खिलाड़ी की रणनीति s2(α) के साथ) एक अनुक्रम {a(1), b(2), a(3), b(4),..., उत्पन्न करें। a(t), b(t+1),...}, जो B से संबंधित नहीं है। यह संभव है, क्योंकि {a(1), a(3), a(5) के लिए विकल्पों की संख्या, ...} में निरंतरता के समान ही कार्डिनैलिटी है, जो कि उचित प्रारंभिक भाग की कार्डिनैलिटी से बड़ी है { β जे | बी जे का α}।
  6. इस अनुक्रम को A में जोड़ें (यदि यह पहले से ही A में नहीं है), यह इंगित करने के लिए कि s2(α) हारता है ({a(1), a(3), a(5), ...} पर)।
  7. α पर ट्रांसफिनिट इंडक्शन के साथ S1 और S2 की सभी संभावित रणनीतियों को प्रोसेस करें। उन सभी अनुक्रमों के लिए जो उसके बाद A या B में नहीं हैं, मनमाने ढंग से तय करें कि वे A के हैं या B के हैं। इसलिए B, A का पूरक है।

एक बार यह हो जाने के बाद, एक ω-खेल G के लिए तैयारी करें। यदि आप मुझे पहले खिलाड़ी की रणनीति s1 देते हैं, तो एक α होता है J ऐसा है कि s1 = s1(α), और हमने A का निर्माण ऐसा किया है कि s1(α) विफल हो जाता है (दूसरे खिलाड़ी के कुछ विकल्पों {b(2), b(4), b(6), ...} पर) . इसलिए s1 विफल रहता है। इसी तरह, किसी भी खिलाड़ी की कोई अन्य रणनीति विफल हो जाती है। इसलिए नियतत्व का स्वयंसिद्ध और पसंद का स्वयंसिद्ध असंगत है।

असीम तर्क और नियतत्व का स्वयंसिद्ध

20वीं सदी के अंत में इन्फिनिटरी लॉजिक के कई अलग-अलग संस्करण प्रस्तावित किए गए थे। नियतत्व के स्वयंसिद्ध में विश्वास करने का एक कारण यह है कि इसे इस प्रकार लिखा जा सकता है (अनंत तर्क के एक संस्करण में):

या

नोट: Seq(S) सभी का समुच्चय है एस के अनुक्रम। यहां वाक्य परिमाणक (तर्क)तर्क) की एक अनगिनत अनंत सूची के साथ असीम रूप से लंबे हैं जहां दीर्घवृत्त दिखाई देते हैं।

बड़े कार्डिनल और नियतत्व का स्वयंसिद्ध

निर्धारकता के स्वयंसिद्ध की संगति बड़े कार्डिनल स्वयंसिद्धों की संगति के प्रश्न से निकटता से संबंधित है। डब्ल्यू ह्यूग वुडिन के एक प्रमेय के अनुसार, जर्मेलो-फ्रेंकेल सेट थ्योरी विदाउट च्वाइस (जेडएफ) की स्थिरता एक साथ निर्धारण के स्वयंसिद्ध के साथ, जर्मेलो-फ्रेंकेल सेट थ्योरी विद च्वाइस (जेडएफसी) की संगति के साथ-साथ असीम रूप से अस्तित्व के बराबर है। कई वुड का कार्डिनल्स। चूंकि वुडिन कार्डिनल दुर्गम कार्डिनल हैं, यदि AD संगत है, तो दुर्गम कार्डिनल्स की अनंतता है।

इसके अलावा, अगर वुडिन कार्डिनल्स के एक अनंत सेट की परिकल्पना को उन सभी की तुलना में एक औसत दर्जे का कार्डिनल का अस्तित्व जोड़ा जाता है, तो लेबेसेग का एक बहुत मजबूत सिद्धांत वास्तविकताओं के औसत दर्जे का सेट उभरता है, क्योंकि यह तब सिद्ध होता है कि निर्धारण का स्वयंसिद्ध है एल (आर) में सच है, और इसलिए एल (आर) में वास्तविक संख्याओं का हर सेट निर्धारित होता है।

प्रोजेक्टिव ऑर्डिनल्स

मॉस्कोवाकिस ने अध्यादेश पेश किया , जो की लंबाई की ऊपरी सीमा है -नॉर्म्स (इंजेक्शन ए अध्यादेशों में सेट करें), जहां प्रोजेक्टिव पदानुक्रम का एक स्तर है। एडी मानते हुए, सभी प्रारंभिक क्रमिक हैं, और हमारे पास है , और के लिए वें सुस्लिन कार्डिनल के बराबर है .[1]


यह भी देखें

संदर्भ


इनलाइन उद्धरण

  1. V. G. Kanovei, The axiom of determinacy and the modern development of descriptive set theory, UDC 510.225; 510.223, Plenum Publishing Corporation (1988) p.270,282. Accessed 20 January 2023.


अग्रिम पठन