अंतर भागफल
एकल-चर कलन में, अंतर भागफल आमतौर पर अभिव्यक्ति का नाम होता है
जिसे जब किसी फ़ंक्शन की सीमा तक ले जाया जाता है, जैसे h 0 की ओर अग्रसर होता है, तो फ़ंक्शन (गणित) f का यौगिक देता है।[1][2][3][4] अभिव्यक्ति का नाम इस तथ्य से उपजा है कि यह फ़ंक्शन के मूल्यों के अंतर (गणित) का भागफल है जो इसके तर्क के संगत मानों के अंतर से है (बाद वाला है (x + h) - x = h इसमें मामला)।[5][6] अंतर भागफल एक अंतराल (गणित) पर फ़ंक्शन के परिवर्तन (गणित) की औसत दर का एक उपाय है (इस मामले में, लंबाई h का अंतराल)।[7][8]: 237 [9] अंतर भागफल की सीमा (यानी, व्युत्पन्न) इस प्रकार परिवर्तन की तात्कालिक दर है।[9]
अंकन (और दृष्टिकोण) में मामूली बदलाव से, एक अंतराल [ए, बी] के लिए, अंतर भागफल
कहा जाता है[5]अंतराल [ए, बी] पर एफ के व्युत्पन्न का औसत (या औसत) मूल्य। यह नाम औसत मूल्य प्रमेय द्वारा उचित है, जो बताता है कि एक अलग-अलग फ़ंक्शन f के लिए, इसका व्युत्पन्न f' अंतराल में किसी बिंदु पर फ़ंक्शन के अपने माध्य तक पहुंचता है।[5]ज्यामितीय रूप से, यह अंतर भागफल निर्देशांक (a, f(a)) और (b, f(b)) वाले बिंदुओं से गुजरने वाली छेदक रेखा के ढलान को मापता है।[10] भिन्न भागफल का उपयोग संख्यात्मक विभेदन में सन्निकटन के रूप में किया जाता है,[8] लेकिन वे इस आवेदन में आलोचना का विषय भी रहे हैं।[11] टेम्पोरल डिस्क्रिटाइजेशन से जुड़े अनुप्रयोगों में अंतर कोशेंट भी प्रासंगिकता पा सकते हैं, जहां एच के मान के लिए समय कदम की चौड़ाई का उपयोग किया जाता है।
अंतर भागफल को कभी-कभी न्यूटन भागफल भी कहा जाता है[10][12][13][14] (आइजैक न्यूटन के बाद) या फर्मेट का अंतर भागफल (पियरे डी फर्मेट के बाद)।[15]
सिंहावलोकन
ऊपर चर्चा की गई अंतर भागफल की विशिष्ट धारणा एक अधिक सामान्य अवधारणा का एक विशेष मामला है। कलन और अन्य उच्च गणित का प्राथमिक वाहन फलन (गणित) है। इसका इनपुट मान इसका तर्क है, आमतौर पर एक बिंदु (P) एक ग्राफ पर अभिव्यक्त होता है। दो बिंदुओं के बीच का अंतर, स्वयं, उनके डेल्टा (पत्र)अक्षर) (ΔP) के रूप में जाना जाता है, जैसा कि उनके कार्य परिणाम में अंतर है, गठन की दिशा द्वारा निर्धारित विशेष अंकन:
- आगे का अंतर: ΔF(P) = F(P + ΔP) - F(P);
- केंद्रीय अंतर: δF(P) = F(P + ½ΔP) − F(P − ½ΔP);
- पिछड़ा अंतर: ∇F(P) = F(P) − F(P − ΔP).
सामान्य वरीयता आगे की ओर उन्मुखीकरण है, क्योंकि F(P) आधार है, जिसमें अंतर (यानी, ΔP s) जोड़े जाते हैं। आगे,
- अगर |ΔP| परिमित है (अर्थात् मापने योग्य), तो ΔF(P) को 'परिमित अंतर' के रूप में जाना जाता है, जिसमें DP और DF(P) के विशिष्ट अर्थ होते हैं;
- अगर |ΔP (एक असीम रूप से छोटी राशि——आमतौर पर मानक विश्लेषण में एक सीमा के रूप में व्यक्त किया जाता है: ), तो ΔF(P) को dP और dF(P) के विशिष्ट अर्थों के साथ एक अतिसूक्ष्म अंतर के रूप में जाना जाता है (कैलकुलस ग्राफ़िंग में, बिंदु को लगभग अनन्य रूप से x और F(x) को y के रूप में पहचाना जाता है)।
बिंदु अंतर से विभाजित फ़ंक्शन अंतर को अंतर भागफल के रूप में जाना जाता है:
यदि ΔP अपरिमित है, तो अंतर भागफल एक व्युत्पन्न है, अन्यथा यह एक विभाजित अंतर है:
बिंदु सीमा को परिभाषित करना
भले ही ΔP अपरिमेय या परिमित है, वहाँ (कम से कम—व्युत्पन्न के मामले में—सैद्धांतिक रूप से) एक बिंदु सीमा होती है, जहां सीमाएँ P ± (0.5) ΔP (अभिविन्यास के आधार पर—ΔF(P), δF( पी) या ∇F (पी)):
- एलबी = निचली सीमा; यूबी = ऊपरी सीमा;
डेरिवेटिव्स को स्वयं कार्यों के रूप में माना जा सकता है, अपने स्वयं के डेरिवेटिव्स को आश्रय देना। इस प्रकार प्रत्येक कार्य व्युत्पत्ति, या विभेदीकरण की अनुक्रमिक डिग्री (उच्च क्रम) का घर है। इस संपत्ति को सभी अंतर भागफलों के लिए सामान्यीकृत किया जा सकता है।
चूंकि इस अनुक्रमण के लिए एक समान सीमा स्प्लिन्टरिंग की आवश्यकता होती है, इसलिए बिंदु श्रेणी को छोटे, सम-आकार वाले खंडों में विभाजित करना व्यावहारिक है, प्रत्येक अनुभाग को एक मध्यस्थ बिंदु (पी) द्वारा चिह्नित किया जाता है।i), जहां एलबी = पी0 और यूबी = पीń, nवाँ बिंदु, डिग्री/क्रम के बराबर:
एलबी = पी0 = पी0 + 0डी1पी = पीń - (Ń-0)डी1पी;
पी1 = पी0 + 1 डी1पी = पीń - (Ń-1)डी1पी; पी2 = पी0 + 2डी1पी = पीń - (Ń-2)डी1पी; पी3 = पी0 + 3डी1पी = पीń - (Ń-3)D1पी; ↓ ↓ ↓ ↓ पीń-3 = पी0 + (Ń-3)डी1पी = पीń - 3डी1पी; पीń-2 = पी0 + (Ń-2)डी1पी = पीń - 2डी1पी; पीń-1 = पी0 + (Ń-1)डी1पी = पीń - 1डी1पी; यूबी = पीń-0 = पी0 + (Ń-0)डी1पी = पीń - 0डी1पी = पीń;
ΔP = Δ1पी = पी1 - पी0 = पी2 - पी1 = पी3 - पी2 = ... = पीń - पीń-1;
ΔB = UB - LB = Pń - पी0 = डीńपी = ŃΔ1पी।
प्राथमिक अंतर भागफल (Ń = 1)
व्युत्पन्न के रूप में
- एक व्युत्पन्न के रूप में अंतर भागफल को कोई स्पष्टीकरण की आवश्यकता नहीं है, सिवाय इसके कि पी0 अनिवार्य रूप से पी के बराबर है1 = पी2 = ... = पीń (चूंकि अंतर अतिसूक्ष्म हैं), लीबनिज संकेतन और व्युत्पन्न अभिव्यक्तियाँ P से P में अंतर नहीं करती हैं0 या पीń:
अवकलन के लिए डेरिवेटिव#नोटेशन हैं, लेकिन ये सबसे अधिक मान्यता प्राप्त, मानक पदनाम हैं।
एक विभाजित अंतर के रूप में
- एक विभाजित अंतर, हालांकि, आगे स्पष्टीकरण की आवश्यकता होती है, क्योंकि यह एलबी और यूबी के बीच औसत व्युत्पन्न के बराबर होता है:
- इस व्याख्या में, पीã निकाले गए फ़ंक्शन का प्रतिनिधित्व करता है, P का औसत मान (मिडरेंज, लेकिन आमतौर पर बिल्कुल मिडपॉइंट नहीं), फ़ंक्शन औसत के आधार पर विशेष मूल्यांकन से निकाला जाता है। अधिक औपचारिक रूप से, पीã कलन के माध्य मान प्रमेय में पाया जाता है, जो कहता है:
- किसी भी कार्य के लिए जो [एलबी, यूबी] पर निरंतर है और अलग-अलग (एलबी, यूबी) पर कुछ पी मौजूद हैã अंतराल में (LB,UB) जैसे कि अंतराल [LB,UB] के अंत बिंदुओं में शामिल होने वाला छेदक P पर स्पर्शरेखा के समानांतर हैã.
- अनिवार्य रूप से, पीã एलबी और यूबी के बीच पी के कुछ मूल्य को दर्शाता है- इसलिए,
- जो माध्य मान परिणाम को विभाजित अंतर से जोड़ता है:
- जैसा कि इसकी परिभाषा के अनुसार, एलबी/पी के बीच एक ठोस अंतर है0 और यूबी/पीń, लीबनिज़ और व्युत्पन्न अभिव्यक्तियों को फ़ंक्शन तर्क के विचलन की आवश्यकता होती है।
उच्च-क्रम अंतर भागफल
दूसरा क्रम
तीसरा क्रम
वां क्रम
विभाजित अंतर को लागू करना
विभाजित अंतर का सर्वोत्कृष्ट अनुप्रयोग निश्चित अभिन्न की प्रस्तुति में है, जो एक परिमित अंतर से ज्यादा कुछ नहीं है:
यह देखते हुए कि औसत मूल्य, व्युत्पन्न अभिव्यक्ति प्रपत्र शास्त्रीय अभिन्न संकेतन के रूप में सभी समान जानकारी प्रदान करता है, औसत मूल्य प्रपत्र बेहतर अभिव्यक्ति हो सकता है, जैसे लेखन स्थानों में जो केवल मानक ASCII पाठ का समर्थन / स्वीकार करते हैं, या केवल ऐसे मामलों में औसत व्युत्पन्न की आवश्यकता होती है (जैसे कि दीर्घवृत्तीय समाकल में औसत त्रिज्या ज्ञात करते समय)। यह विशेष रूप से निश्चित इंटीग्रल के लिए सच है जो तकनीकी रूप से (जैसे) 0 और कोई भी है या सीमाओं के रूप में, उसी विभाजित अंतर के साथ जो 0 और की सीमाओं के साथ पाया गया (इस प्रकार कम औसत प्रयास की आवश्यकता होती है):
पुनरावृत्त और एकाधिक अभिन्न (ΔA = AU - AL, ΔB = BU - BL, ΔC = CU - CL) से निपटने के दौरान यह विशेष रूप से उपयोगी हो जाता है:
इस तरह,
और
यह भी देखें
- विभाजित मतभेद
- फर्मेट सिद्धांत
- न्यूटन बहुपद
- आयत विधि
- भागफल नियम
- सममित अंतर भागफल
संदर्भ
- ↑ Peter D. Lax; Maria Shea Terrell (2013). अनुप्रयोगों के साथ पथरी. Springer. p. 119. ISBN 978-1-4614-7946-8.
- ↑ Shirley O. Hockett; David Bock (2005). बैरन की एपी कैलकुलस की तैयारी कैसे करें. Barron's Educational Series. p. 44. ISBN 978-0-7641-2382-5.
- ↑ Mark Ryan (2010). डमियों के लिए कैलकुलस एसेंशियल्स. John Wiley & Sons. pp. 41–47. ISBN 978-0-470-64269-6.
- ↑ Karla Neal; R. Gustafson; Jeff Hughes (2012). प्रीकैलकुलस. Cengage Learning. p. 133. ISBN 978-0-495-82662-0.
- ↑ 5.0 5.1 5.2 Michael Comenetz (2002). Calculus: The Elements. World Scientific. pp. 71–76 and 151–161. ISBN 978-981-02-4904-5.
- ↑ Moritz Pasch (2010). मोरिट्ज़ पास्च द्वारा गणित की नींव पर निबंध. Springer. p. 157. ISBN 978-90-481-9416-2.
- ↑ Frank C. Wilson; Scott Adamson (2008). एप्लाइड कैलकुलस. Cengage Learning. p. 177. ISBN 978-0-618-61104-1.
- ↑ 8.0 8.1 Tamara Lefcourt Ruby; James Sellers; Lisa Korf; Jeremy Van Horn; Mike Munn (2014). Kaplan AP Calculus AB & BC 2015. Kaplan Publishing. p. 299. ISBN 978-1-61865-686-5.
- ↑ 9.0 9.1 Thomas Hungerford; Douglas Shaw (2008). Contemporary Precalculus: A Graphing Approach. Cengage Learning. pp. 211–212. ISBN 978-0-495-10833-7.
- ↑ 10.0 10.1 Steven G. Krantz (2014). विश्लेषण की नींव. CRC Press. p. 127. ISBN 978-1-4822-2075-9.
- ↑ Andreas Griewank; Andrea Walther (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM. pp. 2–. ISBN 978-0-89871-659-7.
- ↑ Serge Lang (1968). विश्लेषण 1. Addison-Wesley Publishing Company. p. 56.
- ↑ Brian D. Hahn (1994). Fortran 90 for Scientists and Engineers. Elsevier. p. 276. ISBN 978-0-340-60034-4.
- ↑ Christopher Clapham; James Nicholson (2009). गणित का संक्षिप्त ऑक्सफोर्ड डिक्शनरी. Oxford University Press. p. 313. ISBN 978-0-19-157976-9.
- ↑ Donald C. Benson, A Smoother Pebble: Mathematical Explorations, Oxford University Press, 2003, p. 176.
बाहरी संबंध
- Saint Vincent College: Br. David Carlson, O.S.B.—MA109 The Difference Quotient Archived 2005-09-12 at the Wayback Machine
- University of Birmingham: Dirk Hermans—Divided Differences
- Mathworld:
- University of Wisconsin: Thomas W. Reps and Louis B. Rall — Computational Divided Differencing and Divided-Difference Arithmetics
- Interactive simulator on difference quotient to explain the derivative