सामान्यीकृत बल

From Vigyanwiki
Revision as of 12:41, 11 March 2023 by alpha>ShivOmVerma

विश्लेषणात्मक यांत्रिकी (विशेष रूप से लैग्रैंगियन यांत्रिकी) में, सामान्यीकृत बल सामान्यीकृत निर्देशांक के साथ संयुग्मित होते हैं। वे प्रयुक्त किये गए बल Fi, i = 1, …, n से प्राप्त होते हैं, जो एक ऐसी प्रणाली पर कार्य करते हैं जिसका विन्यास सामान्यीकृत निर्देशांक के संदर्भ में परिभाषित होता है। आभासी कार्य के निर्माण में, प्रत्येक सामान्यीकृत बल एक सामान्यीकृत समन्वय की भिन्नता का गुणांक है। एक भौतिक प्रणाली पर कार्य करना जिसका विन्यास सामान्यीकृत निर्देशांक के संदर्भ में परिभाषित है। के निर्माण में, प्रत्येक सामान्यीकृत बल एक सामान्यीकृत समन्वय की भिन्नता का गुणांक है।

वर्चुअल वर्क

आभासी कार्य की गणना से सामान्यीकृत बल प्राप्त किए जा सकते हैं, , प्रयुक्त बलों की। प्रयुक्त बलों के आभासी कार्य, δW, की गणना से सामान्यीकृत बलों को प्राप्त किया जा सकता है।[1]: 265 

बलों का आभासी काम, , कणों पर अभिनय , द्वारा दिया गया है कणों Pi, i = 1, ..., n पर कार्य करने वाले बलों Fi का आभासी कार्य, द्वारा दिया गया है

जहाँ δri कण Pi का आभासी विस्थापन है।

सामान्यीकृत निर्देशांक

मान लें कि प्रत्येक कण की स्थिति सदिश, ri, सामान्यीकृत निर्देशांकों का एक फलन है, qj, j = 1, ..., m। फिर आभासी विस्थापन δri द्वारा दिया जाता है

प्रत्येक कण के स्थिति सदिश होने दें, , सामान्यीकृत निर्देशांक का एक कार्य हो, . फिर आभासी विस्थापन द्वारा दिया गया है

जहाँ δqj सामान्यीकृत निर्देशांक का आभासी विस्थापन है qj.

कणों के निकाय के लिए आभासी कार्य हो जाता है

के गुणांक लीजिए δqj ताकि


सामान्यीकृत बल

कणों के निकाय के आभासी कार्य को रूप में लिखा जा सकता है

जहाँ

सामान्यीकृत निर्देशांक से जुड़े सामान्यीकृत बल कहलाते हैं qj, j = 1, ..., m.

वेग सूत्रीकरण

आभासी कार्य के सिद्धांत के अनुप्रयोग में सिस्टम के वेग से आभासी विस्थापन प्राप्त करना अक्सर सुविधाजनक होता है। n कण प्रणाली के लिए, प्रत्येक कण P का वेग देंi होना Vi, फिर आभासी विस्थापन δri के रूप में भी लिखा जा सकता है[2]

इसका मतलब है कि सामान्यीकृत बल, Qj, के रूप में भी निर्धारित किया जा सकता है


डी'अलेम्बर्ट का सिद्धांत

डी'अलेम्बर्ट ने जड़त्व बल (स्पष्ट बल) के साथ प्रयुक्त बलों के संतुलन के रूप में एक कण की गतिकी तैयार की, जिसे डी'अलेम्बर्ट का सिद्धांत कहा जाता है। एक कण का जड़त्व बल, Pi, द्रव्यमान का mi है

जहाँ Ai कण का त्वरण है।

यदि कण प्रणाली का विन्यास सामान्यीकृत निर्देशांक पर निर्भर करता है qj, j = 1, ..., m, तो सामान्यीकृत जड़त्व बल द्वारा दिया जाता है

डी'अलेम्बर्ट के आभासी कार्य के सिद्धांत का रूप फल देता है


संदर्भ

  1. Torby, Bruce (1984). "Energy Methods". इंजीनियरों के लिए उन्नत गतिशीलता. HRW Series in Mechanical Engineering. United States of America: CBS College Publishing. ISBN 0-03-063366-4.
  2. T. R. Kane and D. A. Levinson, Dynamics, Theory and Applications, McGraw-Hill, NY, 2005.


यह भी देखें

  • लैग्रैन्जियन यांत्रिकी
  • सामान्यीकृत निर्देशांक
  • स्वतंत्रता की डिग्री (भौतिकी और रसायन शास्त्र)
  • आभासी कार्य


श्रेणी:यांत्रिकी श्रेणी:शास्त्रीय यांत्रिकी श्रेणी:लैग्रैंजियन यांत्रिकी