सामान्यीकृत बल

From Vigyanwiki
Revision as of 15:04, 11 March 2023 by alpha>ShivOmVerma

विश्लेषणात्मक यांत्रिकी (विशेष रूप से लैग्रैंगियन यांत्रिकी) में, सामान्यीकृत बल सामान्यीकृत निर्देशांक के साथ संयुग्मित होते हैं। वे प्रयुक्त किये गए बल Fi, i = 1, …, n से प्राप्त होते हैं, जो ऐसी प्रणाली पर कार्य करते हैं जिसका विन्यास सामान्यीकृत निर्देशांक के संदर्भ में परिभाषित होता है। आभासी कार्य के निर्माण में, प्रत्येक सामान्यीकृत बल सामान्यीकृत समन्वय की भिन्नता का गुणांक है।

वर्चुअल वर्क

प्रयुक्त बलों के आभासी कार्य, δW, की गणना से सामान्यीकृत बलों को प्राप्त किया जा सकता है।[1]: 265 

कणों Pi, i = 1, ..., n पर कार्य करने वाले बलों Fi का आभासी कार्य, द्वारा दिया गया है:

जहाँ δri कण Pi का आभासी विस्थापन है।

सामान्यीकृत निर्देशांक

मान लें कि प्रत्येक कण की स्थिति सदिश, ri, सामान्यीकृत निर्देशांकों का फलन है, qj, j = 1, ..., m। फिर आभासी विस्थापन δri द्वारा दिया जाता है:

जहाँ δqj सामान्यीकृत निर्देशांक qj का आभासी विस्थापन है।

कणों के निकाय के लिए आभासी कार्य हो जाता है:

δqj के गुणांक लीजिए जिससे,


सामान्यीकृत बल

कणों के निकाय के आभासी कार्य को इस रूप में लिखा जा सकता है:

जहाँ

सामान्यीकृत निर्देशांक qj, j = 1, ..., m से जुड़े सामान्यीकृत बल कहलाते हैं।

वेग सूत्रीकरण

आभासी कार्य के सिद्धांत के अनुप्रयोग में प्रणाली के वेग से आभासी विस्थापन प्राप्त करना अधिकांशतः सुविधाजनक होता है। n कण प्रणाली के लिए, प्रत्येक कण Pi का वेग Vi होने दें , फिर आभासी विस्थापन δri के रूप में भी लिखा जा सकता है:[2]

इसका अर्थ है कि सामान्यीकृत बल, Qj, के रूप में भी निर्धारित किया जा सकता है:


डी'अलेम्बर्ट का सिद्धांत

डी'अलेम्बर्ट ने जड़त्व बल (स्पष्ट बल) के साथ प्रयुक्त बलों के संतुलन के रूप में कण की गतिकी तैयार की, जिसे डी'अलेम्बर्ट का सिद्धांत कहा जाता है। mi द्रव्यमान के कण Pi का जड़त्व बल है:

जहाँ Ai कण का त्वरण है।

यदि कण प्रणाली का विन्यास सामान्यीकृत निर्देशांक qj, j = 1, ..., m पर निर्भर करता है , तो सामान्यीकृत जड़त्व बल द्वारा यह दिया जाता है:

डी'अलेम्बर्ट के आभासी कार्य के सिद्धांत का रूप यह परिणाम देता है:


संदर्भ

  1. Torby, Bruce (1984). "Energy Methods". इंजीनियरों के लिए उन्नत गतिशीलता. HRW Series in Mechanical Engineering. United States of America: CBS College Publishing. ISBN 0-03-063366-4.
  2. T. R. Kane and D. A. Levinson, Dynamics, Theory and Applications, McGraw-Hill, NY, 2005.


यह भी देखें

  • लैग्रैन्जियन यांत्रिकी
  • सामान्यीकृत निर्देशांक
  • स्वतंत्रता की डिग्री (भौतिकी और रसायन शास्त्र)
  • आभासी कार्य


श्रेणी:यांत्रिकी श्रेणी:शास्त्रीय यांत्रिकी श्रेणी:लैग्रैंजियन यांत्रिकी