वक्र संकुलन प्रमेय

From Vigyanwiki
पाँच-शीर्ष समतलीय ग्राफ के लिए एक वृत्त संकुलन

वक्र संकुलन प्रमेय(कोएबे-एंड्रीव-थर्स्टन प्रमेय के रूप में भी जाना जाता है) समतल में वक्रों के बीच संभावित स्पर्शरेखा संबंधों का वर्णन करता है, जिनके आंतरिक भाग अलग हैं। एक वक्र संकुलन वक्रों का जुड़ा हुआ संग्रह है(सामान्य रूप से, किसी भी रीमैन सतह पर) जिसका आंतरिक भाग अलग है। एक वृत्त संकुलन का प्रतिच्छेदन ग्राफ़ प्रत्येक वृत्त के लिए एक शीर्ष(ग्राफ़ सिद्धांत) वाला ग्राफ़ है, और स्पर्शरेखा वक्रों के प्रत्येक युग्म के लिए एक किनारे(ग्राफ़ सिद्धांत) है। यदि वक्र संकुलन समतल पर है, या, समतुल्य रूप से, गोले पर है, तो इसके प्रतिच्छेदन ग्राफ को वृत्त ग्राफ कहा जाता है; अधिक सामान्यतः, आंतरिक-असंबद्ध ज्यामितीय वस्तुओं के प्रतिच्छेदन ग्राफ को स्पर्शरेखा ग्राफ या संपर्क ग्राफ कहा जाता है। वृत्त ग्राफ सदैव संयोजित, सरल ग्राफ और समतल ग्राफ होते हैं। वक्र संकुलन प्रमेय में कहा गया है कि वृत्त ग्राफ होने के लिए ग्राफ के लिए ये एकमात्र आवश्यकताएं हैं:

वक्र संकुलन प्रमेय: प्रत्येक जुड़े सरल समतल ग्राफ 'G' के लिए तल में वक्र संकुलन होता है जिसका प्रतिच्छेदन ग्राफ(ग्राफ समरूपता) G है।

अद्वितीयता

अधिकतम समतल ग्राफ G एक परिमित सरल समतल ग्राफ है जिसमें समतलता को संरक्षित करते हुए कोई और किनारा नहीं जोड़ा जा सकता है। इस प्रकार के ग्राफ में सदैव एक अद्वितीय समतल अंत:स्थापन होता है, जिसमें अंत:स्थापन का प्रत्येक तल(बाहरी तल सहित) एक त्रिकोण होता है। दूसरे शब्दों में, प्रत्येक अधिकतम समतल ग्राफ G एक साधारण परिसर का 1- सारांश है जो गोले के लिए होमियोमॉर्फिक है। वक्र संकुलन प्रमेय वक्र संकुलन के अस्तित्व की गारंटी देता है जिसमें बहुत से वक्र होते हैं जिनके प्रतिच्छेदन का ग्राफ G के लिए समरूपी होता है। जैसा कि निम्नलिखित प्रमेय अधिक विधिवत् रूप से बताता है, प्रत्येक अधिकतम समतल ग्राफ में अधिकतम एक संकुलन हो सकती है।

'कोएबे-एंड्रीव-थर्स्टन प्रमेय': यदि G एक परिमित अधिकतम समतल ग्राफ है, तो वक्र संकुलन जिसकी स्पर्शरेखा ग्राफ G के लिए समरूपी है, अद्वितीय है, मोबियस परिवर्तन और रेखाओं में प्रतिबिंब तक

थर्स्टन ने देखा कि यह विशिष्टता मोस्टो दृढ़ता प्रमेय का परिणाम है। इसे देखने के लिए, मान लीजिए कि G को वृत्त संकुलन द्वारा दर्शाया गया है। फिर जिस समतल में वृत्त संकुलित हैं, उसे त्रि-आयामी अतिपरवलयिक स्थान के लिए पोंकारे अर्ध-तल मॉडल की सीमा के रूप में देखा जा सकता है; इस दृश्य के साथ, प्रत्येक वृत्त अतिपरवलिक स्थान के भीतर एक समतल की सीमा है। संकुलन के वक्रों से इस प्रकार से अलग-अलग समतलों के एक समूह को परिभाषित किया जा सकता है, और वक्रों द्वारा परिभाषित अलग-अलग समतलों का एक दूसरा समूह जो संकुलन में तीन वक्रों के बीच प्रत्येक त्रिकोणीय अंतर को घेरता है। समतलों के ये दो समूह समकोण पर मिलते हैं, और एक प्रतिबिंब समूह के समूहों के उत्पादक समूह का निर्माण करते हैं, जिनके मूलभूत प्रांत को अतिपरवलिक कई गुना के रूप में देखा जा सकता है। मोस्टो दृढ़ता से, इस प्रांत की अतिपरवलयिक संरचना विशिष्ट रूप से निर्धारित होती है, अतिपरवलिक स्थान की समरूपता तक; ये समदूरीकता, जब अर्ध-तल मॉडल की सीमा पर यूक्लिडियन तल पर उनके कार्यों के संदर्भ में देखी जाती हैं, तो मोबियस परिवर्तन में बदल जाती हैं।[1]

किसी परिमित समुच्चय में अधिकतम मान के अस्तित्व के आधार पर और इस अवलोकन पर कि, तीन पारस्परिक रूप से स्पर्शरेखा वक्रों के केंद्रों को जोड़ने वाले त्रिभुज में, एक के केंद्र में बने कोण के आधार पर, एक ही अद्वितीयता गुण का एक और प्राथमिक प्रमाण भी है। वृत्तों की संख्या अपनी त्रिज्या में एकरसता घट रही है और दो अन्य त्रिज्याओं में एकरसता बढ़ रही है। एक ही ग्राफ के लिए दो संकुलन दी गई हैं, कोई इन दो संकुलों में बाहरी वृत्तों को एक दूसरे के अनुरूप बनाने के लिए प्रतिबिंब और मोबियस रूपांतरण लागू कर सकता है और एक ही त्रिज्या हो सकता है। फिर, को का एक आंतरिक शीर्ष होने दें, जिसके लिए दो संकुलन में वक्रों के आकार हैं जो यथासंभव दूर हैं: अर्थात, दो संकुलन में इसके वक्रों की त्रिज्या के अनुपात को अधिकतम करने के लिए चुनें। युक्त के प्रत्येक त्रिकोणीय तल के लिए , यह इस प्रकार है कि पहली संकुलन में के लिए वृत्त के केंद्र में कोण दूसरी संकुलन में कोण से कम या उसके बराबर है, समानता के साथ ही संभव है जब अन्य दो वृत्त बनाते हैं त्रिकोण में दो वक्रों में त्रिज्या का समान अनुपात है। परन्तु त्रिभुज के केंद्र को घेरने वाले इन सभी त्रिभुजों के कोणों का योग दोनों संकुलन में होना चाहिए, इसलिए के सभी निकटवर्ती शीर्षों वही अनुपात होना चाहिए जो स्वयं का है। इन अन्य वृत्तों पर समान तर्क लागू करने से, यह पता चलता है कि दोनों संकुलों में सभी वृत्तों का अनुपात समान है। परन्तु बाहरी वक्रों को एक अनुपात में बदल दिया गया है, इसलिए और दो संकुलन में सभी वक्रों के लिए समान त्रिज्या है।

अनुरूप प्रतिचित्रण सिद्धांत के साथ संबंध

निर्दिष्ट प्रांत के बीच अनुमानित अनुरूप प्रतिचित्रण के लिए वक्र संकुलन का उपयोग किया जा सकता है । बाईं ओर प्रत्येक वृत्त दाईं ओर एक वृत्त से मेल खाता है।

समतल में या उच्च-आयामी स्थान में दो खुले समूहों के बीच एक अनुरूप प्रतिचित्र एक समूह से दूसरे तक एक सतत कार्य है जो किसी भी दो वक्रों के बीच कोणों को संरक्षित करता है। 1851 में बर्नहार्ड रीमैन द्वारा तैयार किए गए रीमैन प्रतिचित्रण प्रमेय में कहा गया है कि, समतल में किसी भी दो खुली डिस्क(गणित) के लिए, एक डिस्क से दूसरी डिस्क पर एक अनुरूप प्रतिचित्र होता है। अनुरूप प्रतिचित्रण में जाल निर्माण, प्रतिचित्र प्रक्षेपण और अन्य क्षेत्रों में अनुप्रयोग होते हैं। यद्यपि, स्पष्ट विधि से दो दिए गए प्रांत के बीच अनुरूप प्रतिचित्रण का निर्माण करना सदैव सरल नहीं होता है।[2]

1985 में बीबरबैक सम्मेलन में, विलियम थर्स्टन ने अनुमान लगाया कि वक्र संकुलन का उपयोग अनुमानित अनुरूप प्रतिचित्रण के लिए किया जा सकता है। अधिक यथार्थ रूप से, थर्स्टन ने वक्र संकुलन का उपयोग यादृच्छिक रूप से खुली डिस्क A से एक वक्र के आंतरिक भाग के अनुरूप प्रतिचित्रण खोजने के लिए किया; एक टोपोलॉजिकल डिस्क A से दूसरी डिस्क B में प्रतिचित्रण तब A से एक वक्र में प्रतिचित्र को B से एक वक्र के प्रतिचित्र के व्युत्क्रम के साथ बनाकर पाया जा सकता है।[2]

थर्स्टन का विचार क्षेत्र A के भीतर समतल के षट्कोणीय चौकोर में कुछ छोटे त्रिज्या r के वक्रों को संकुलित करना था, चौड़ाई r की A की सीमा के समीप एक संकीर्ण क्षेत्र छोड़कर, जहाँ इस त्रिज्या के और अधिक वृत्त उपयुक्त नहीं हो सकते। फिर वह संकुलन की सीमा पर सभी वक्रों के समीप एक अतिरिक्त शीर्ष के साथ वक्र के प्रतिच्छेदन ग्राफ से एक अधिकतम समतल ग्राफ G बनाता है। वक्र संकुलन प्रमेय द्वारा, इस समतल ग्राफ को वक्र संकुलन C द्वारा दर्शाया जा सकता है जिसमें सभी किनारों(सीमा के शीर्ष पर घटना सहित) वक्रों की स्पर्शरेखाओं द्वारा दर्शाए जाते हैं। A के संकुलन से वक्र C से वक्रों के साथ एक-से-एक के अनुरूप होते हैं, C के सीमा चक्र को छोड़कर, जो A की सीमा से मेल खाता है। वक्र के इस पत्राचार का उपयोग A से C तक निरंतर कार्य करने के लिए किया जा सकता है। जिसमें प्रत्येक वक्र और तीन वक्रों के बीच प्रत्येक अंतर को मोबियस परिवर्तन द्वारा एक संकुलन से दूसरे में प्रतिचित्रित किया जाता है। थर्स्टन ने अनुमान लगाया कि, त्रिज्या आर के शून्य तक पहुंचने की सीमा में, इस प्रकार से निर्मित A से C तक के कार्य रीमैन प्रतिचित्रण प्रमेय द्वारा दिए गए अनुरूप कार्य तक पहुंचेंगे।[2]

थर्स्टन का अनुमान रोडिन & सुलिवान (1987) द्वारा सिद्ध किया गया था। अधिक यथार्थ रूप से, उन्होंने दिखाया कि, जैसे n अनंत तक जाता है, थर्स्टन की विधि का उपयोग करके निर्धारित किया गया फलन fn त्रिज्या -1 / n वक्र के षट्कोणीय संकुलन से A के ठोस उपसमूह पर A से C के अनुरूप प्रतिचित्र पर समान रूप से अभिसरण करता है।[2]

थर्स्टन के अनुमान की सफलता के अतिरिक्त, इस पद्धति के व्यावहारिक अनुप्रयोगों को कंप्यूटिंग वक्र संकुलन की कठिनाई और इसकी अपेक्षाकृत धीमी अभिसरण दर से बाधित किया गया है। यद्यपि, गैर-सरल रूप से संयोजित प्रांत पर लागू होने पर और श्वार्ज़-क्रिस्टोफेल प्रतिचित्रण की गणना करने वाली संख्यात्मक तकनीकों के लिए प्रारंभिक सन्निकटन का चयन करने में इसके कुछ लाभ हैं और, बहुभुज प्रांत के अनुरूप प्रतिचित्रण के लिए एक अलग तकनीक है।[2]


प्रमाण

वक्र संकुलन प्रमेय के कई ज्ञात प्रमाण हैं। पॉल कोबे का मूल प्रमाण है उनके अनुरूप एकरूपता प्रमेय के आधार पर कहा गया है कि एक अंतिम रूप से जुड़ा समतल प्रांत अनुरूप रूप से वक्र प्रांत के बराबर है। कई अलग-अलग सामयिक प्रमाण हैं जो जाने जाते हैं। थर्स्टन की उपपत्ति ब्रौवर की नियत बिंदु प्रमेय पर आधारित है। एक स्नातक छात्र के रूप में, प्रिंसटन विश्वविद्यालय में थर्स्टन द्वारा ओडेड श्राम की देखरेख की गई थी। जैसा रोहडे (2011, p. 1628) बताते हैं, श्रैम के शोध प्रबंध में एक काव्यात्मक वर्णन है कि वक्र संकुलन के लिए अस्तित्व को निश्चित बिंदु प्रमेय से कैसे घटाया जा सकता है: "कोई भी भयानक राक्षस को अपनी बाहों को वास्तविक क्रोध में झूलते हुए देख सकता है, तंबू एक भयानक फुफकार उत्पन्न करते हैं, क्योंकि वे एक दूसरे के विरुद्ध रगड़ते हैं।" डिरिचलेट समस्या के हल के निर्माण के लिए पेरोन की विधि के असतत संस्करण का उपयोग करने का एक प्रमाण भी है।[3] यवेस कॉलिन डी वेर्डिएर ने निश्चित विन्यास स्थान पर एक उत्तल फलन के न्यूनतम के रूप में वक्र संकुलन के अस्तित्व को सिद्ध किया।[4]


अनुप्रयोग

वृत्त संकुलन प्रमेय समतलीय ज्यामिति, अनुरूप प्रतिचित्रण और समतल ग्राफ में विभिन्न समस्याओं का अध्ययन करने के लिए उपयोगी उपकरण है। मूल रूप से लिप्टन और टारजन [5] के कारण तलीय विभाजक प्रमेय का एक सुरुचिपूर्ण प्रमाण इस प्रकार प्राप्त किया गया है।[6] वक्र संकुलन प्रमेय का अन्य अनुप्रयोग यह है कि परिबद्ध-डिग्री समतल ग्राफ़की निष्पक्ष सीमा लगभग निश्चित रूप से आवर्तक होती है।[7] अन्य अनुप्रयोगों में आच्छादन समय के लिए निहितार्थ[8] और परिबद्ध-जीनस(गणित) ग्राफ़ के सबसे बड़े आइगेनमान के लिए अनुमान सम्मिलित हैं।[9]

ग्राफ आरेखण में,परिबद्ध कोणीय विभेदन(ग्राफ़ आरेखण )[10] और परिबद्ध ढलान संख्या [11] के साथ समतल ग्राफ़ के रेखाचित्र खोजने के लिए वक्र संकुलन का उपयोग किया गया है। फेरी की प्रमेय, कि प्रत्येक ग्राफ जो घुमावदार किनारों का उपयोग करके समतल के बिना खींचा जा सकने वाला प्रत्येक ग्राफ भी सीधी रेखा खंड किनारों का उपयोग किए बिना रेखण के बिना भी खींचा जा सकता है, वक्र संकुलन प्रमेय के एक सरल परिणाम के रूप में निम्नानुसार है: वक्रों के केंद्रों पर शीर्ष रखकर और उनके बीच सीधे किनारों को आरेखित करके, एक सीधी-रेखा समतल अंतःस्थापन प्राप्त किया जाता है।

एक बहुफलक और उसका मध्य क्षेत्र। वक्र संकुलन प्रमेय का तात्पर्य है कि प्रत्येक बहुफलकीय ग्राफ को एक बहुफलक के ग्राफ के रूप में दर्शाया जा सकता है जिसमें मध्य क्षेत्र होता है।

वक्र संकुलन प्रमेय का एक दृढ़ रूप यह दृढ़ करता है कि किसी भी बहुफलकीय ग्राफ और उसके दोहरे ग्राफ को दो वक्र संकुलन द्वारा दर्शाया जा सकता है, जैसे कि दो स्पर्शरेखा वक्र एक मौलिक ग्राफ किनारे का प्रतिनिधित्व करते हैं, और एक ही किनारे के दोहरे का प्रतिनिधित्व करने वाले दो स्पर्शरेखा वृत्त सदैव समतल के एक ही बिंदु पर एक दूसरे के समकोण पर अपनी स्पर्शरेखाएँ रखते हैं। इस प्रकार के संकुलन का उपयोग उत्तल बहुतल के निर्माण के लिए किया जा सकता है जो दिए गए ग्राफ का प्रतिनिधित्व करता है और जिसमें एक मध्य क्षेत्र है, जो बहुफलक के सभी किनारों पर स्पर्शरेखा है। इसके विपरीत, यदि उत्तल बहुफलक में एक मध्य क्षेत्र होता है, तो बहुफलक तलों के साथ गोले के प्रतिच्छेदन से बनने वाले घेरे और प्रत्येक बहुफलक शीर्ष से देखे जाने वाले गोले पर क्षितिज द्वारा बनाए गए घेरे इस प्रकार की दोहरी संकुलन बनाते हैं।

एल्गोरिथम स्वरूप

कोलिन्स & स्टीफेंसन (2003) विलियम थर्स्टन के विचारों के आधार पर वक्र संकुलन खोजने के लिए एक संख्यात्मक विश्रांती(पुनरावृत्ति विधि) का वर्णन करें। वक्र संकुलन समस्या का संस्करण जिसे वे हल करते हैं, निवेश के रूप में एक समतल ग्राफ लेता है, जिसमें सभी आंतरिक तल त्रिकोण होते हैं और जिसके लिए बाहरी शीर्ष सकारात्मक संख्याओं द्वारा लेबल किए जाते हैं। यह निर्गम के रूप में वक्र संकुलन का उत्पादन करता है जिसकी स्पर्शरेखाएं दिए गए ग्राफ का प्रतिनिधित्व करती हैं, और जिसके लिए बाहरी शीर्ष का प्रतिनिधित्व करने वाले वक्रों में निवेश में निर्दिष्ट त्रिज्या होती है। जैसा कि वे सुझाव देते हैं, समस्या की कुंजी पूर्व संकुलन में वक्रों की त्रिज्या की गणना करना है; एक बार त्रिज्या ज्ञात हो जाने के बाद, वक्रों की ज्यामितीय स्थिति की गणना करना जटिल नहीं होता है। वे अस्थायी त्रिज्या के एक समूह से प्रारम्भ होते हैं जो वैध संकुलन के अनुरूप नहीं होते हैं, और फिर बार-बार निम्न चरणों का पालन करते हैं:

  1. निवेश ग्राफ़ का एक आंतरिक शीर्ष v चुनें।
  2. कुल कोण θ की गणना करें कि इसके k निकटवर्ती वक्र वक्र के चारों ओर v के लिए आच्छादन करेंगे, यदि निकटवर्तीयों को एक दूसरे के लिए स्पर्शरेखा और उनके अस्थायी त्रिज्या का उपयोग करके केंद्रीय वक्र में रखा गया हो।
  3. निकटवर्ती वक्रों के लिए एक प्रतिनिधि त्रिज्या r निर्धारित करें, जैसे कि त्रिज्या r के k वृत्त वही आवरण कोण θ देंगे जो v के निकटवर्ती देते हैं।
  4. v के लिए नवीन त्रिज्या को वह मान समूह करें जिसके लिए त्रिज्या r के k वृत्त ठीक 2π का आवरण कोण देंगे।

इनमें से प्रत्येक चरण सरल त्रिकोणमितीय गणनाओं के साथ किया जा सकता है, और जैसा कि कोलिन्स और स्टीफेंसन तर्क देते हैं, त्रिज्या की प्रणाली तीव्रता से एक अद्वितीय निश्चित बिंदु(गणित) में परिवर्तित हो जाती है, जिसके लिए सभी आच्छादन कोण पूर्णतः 2π हैं। एक बार जब प्रणाली अभिसरण हो जाती है, तो प्रत्येक क्रमिक चक्र के केंद्र को निर्धारित करने के लिए दो निकटवर्ती वक्रों की स्थिति और त्रिज्या का उपयोग करके प्रत्येक चरण में वक्रों को एक समय में रखा जा सकता है।

मोहर (1993) एक बहुफलकीय ग्राफ और उसके दोहरे के एक साथ संकुलन को खोजने के लिए समान पुनरावृत्त तकनीक का वर्णन करता है, जिसमें दोहरे वृत्त प्रारंभिक वक्रों के समकोण पर होते हैं। वह सिद्ध करता है कि विधि में वक्रों की संख्या और लॉग 1/ε में समय लगता है, जहां ε केंद्रों की दूरी और एक इष्टतम संकुलन में गणना की गई संकुलन की त्रिज्या पर एक सीमा है।

सामान्यीकरण

वक्र संकुलन प्रमेय उन ग्राफ़ों को सामान्यीकृत करता है जो समतल नहीं हैं। यदि G एक ग्राफ है जिसे सतह S पर अंतर्निहित किया जा सकता है, तो S पर एक स्थिर वक्रता रीमैनियन कई गुना d और(S, d) पर एक वक्र संकुलन है जिसका संपर्क ग्राफ G के लिए समरूपी है। यदि S बंद है( ठोस और बिना सीमा के) और G S का त्रिभुज है, तो(S, d) और संकुलन अनुरूप समानता तक अद्वितीय हैं। यदि S गोला है, तो यह तुल्यता मोबियस रूपांतरणों तक है; यदि यह एक टोरस है, तो तुल्यता एक स्थिरांक और समदूरीकता द्वारा अनुमापन तक है, जबकि यदि S में जीनस(गणित) कम से कम 2 है, तो तुल्यता समदूरीकता तक है।

वक्र संकुलन प्रमेय के एक अन्य सामान्यीकरण में स्पर्शरेखा की स्थिति को निकटवर्ती शीर्षों के अनुरूप वक्रों के बीच निर्दिष्ट प्रतिच्छेदन कोण के साथ बदलना सम्मिलित है। विशेष रूप से सुरुचिपूर्ण संस्करण इस प्रकार है। मान लीजिए कि G एक परिमित 3-संयोजित समतल ग्राफ(ग्राफ सिद्धांत)(अर्थात, एक बहुफलकीय ग्राफ) है, तो वक्र संकुलन की एक युग्म है, जिसका प्रतिच्छेदन का ग्राफ G के लिए समरूपी है, दूसरा जिसका प्रतिच्छेदन ग्राफ G के दोहरे समतल के लिए समरूपी है, और G में प्रत्येक शीर्ष के लिए और उसके निकटवर्ती फलक के लिए, पूर्व संकुलन में शीर्ष के संगत वृत्त तल के अनुरूप दूसरी संकुलन में वक्र के साथ लंबवत रूप से प्रतिच्छेद करता है।[12] उदाहरण के लिए, इस परिणाम को चतुर्पाश्वीय के ग्राफ पर लागू करने से, किन्हीं भी चार पारस्परिक स्पर्शरेखा वक्रों के लिए, चार पारस्परिक रूप से स्पर्शरेखा वाले वक्रों का एक दूसरा समूह मिलता है, जिनमें से प्रत्येक पूर्व चार में से तीन के लिए लाम्बिक है।[13] एक और सामान्यीकरण, प्रतिच्छेदन कोण को व्युत्क्रम दूरी के साथ बदलकर, संकुलन के विनिर्देशन की अनुमति देता है जिसमें कुछ वक्रों को पार करने या स्पर्शरेखा होने के अतिरिक्त एक दूसरे से अलग होना आवश्यक है।[14]

फिर भी अन्य प्रकार के सामान्यीकरण उन आकृतियों की अनुमति देते हैं जो वृत्त नहीं हैं। मान लीजिए कि G =(V, E) परिमित समतलीय ग्राफ़ है, और G के प्रत्येक शीर्ष v के लिए एक आकृति संगत है, जो बंद इकाई डिस्क के लिए होमियोमोर्फिज्म है और जिसकी सीमा चिकनी है। फिर तल में एक संकुलन है जैसे कि यदि और मात्र यदि और प्रत्येक के लिए समूह अनुवाद और अनुमापन द्वारा से प्राप्त किया जाता है।(ध्यान दें कि मूल वक्र संकुलन प्रमेय में प्रति शीर्ष तीन वास्तविक पैरामीटर हैं, जिनमें से दो संगत वृत्त के केंद्र का वर्णन करते हैं और जिनमें से एक त्रिज्या का वर्णन करता है, और प्रति किनारा एक समीकरण है। यह इस सामान्यीकरण में भी है।) को लागू करके इस सामान्यीकरण का एक प्रमाण कोबे के मूल प्रमाण[15]और हैरिंगटन[16] के प्रमेय को लागू करके प्राप्त किया जा सकता है,[17] जिसमें कहा गया है कि कोई भी अंतिम रूप से जुड़ा हुआ प्रांत एक समतल प्रांत के अनुरूप है, जिसके सीमा घटकों में अनुवाद और अनुमापन तक निर्दिष्ट आकार हैं।

इतिहास

वक्र संकुलन का अध्ययन 1910 की प्रारम्भ में, पत्र-विन्‍यास(ट्री के विकास के गणित) में डॉयल सर्पिल पर अर्नोल्ड एमच के कार्य में किया गया था।[18] वक्र संकुलन प्रमेय को सबसे पूर्व पॉल कोएबे ने सिद्ध किया था।[15] विलियम थर्स्टन[1] ने वक्र संकुलन प्रमेय को फिर से खोजा, और नोट किया कि यह ई. एम. एंड्रीव के कार्य का अनुसरण करता है। थर्स्टन ने इकाई डिस्क के आंतरिक भाग पर समतल के सरल रूप से जुड़े उचित उपसमुच्चय के होमोमोर्फिज्म को प्राप्त करने के लिए वक्र संकुलन प्रमेय का उपयोग करने के लिए एक योजना भी प्रस्तावित की। वक्र संकुलन के लिए थर्स्टन अनुमान उनका अनुमान है कि होमोमोर्फिज्म रीमैन प्रतिचित्रण प्रमेय में परिवर्तित हो जाएगा क्योंकि वक्रों की त्रिज्या शून्य हो जाती है। थर्स्टन अनुमान बाद में बर्टन रोडिन और डेनिस सुलिवन द्वारा सिद्ध हुआ।[19] इसने वक्र संकुलन प्रमेय के विस्तार, अनुरूप प्रतिचित्रण के संबंध,और अनुप्रयोग पर शोध की उत्तेजना की।

यह भी देखें

  • अपोलोनियन गैसकेट, एक अनंत संकुलन त्रिकोणीय अंतराल को बार-बार भरने से बनता है
  • वक्र संकुलन, निर्दिष्ट स्पर्शरेखाओं के बिना वक्रों की सघन व्यवस्था
  • डॉयल सर्पिल, अनंत 6-नियमित समतल ग्राफ का प्रतिनिधित्व करने वाली वक्र संकुलन
  • फोर्ड वक्र, परिमेय संख्या रेखा के साथ वक्रों की संकुलन
  • पेनी ग्राफ, वृत्त ग्राफ जिसके सभी वृत्तों की त्रिज्याएँ समान हैं
  • वलय लेम्मा, एक संकुलन में आसन्न वक्रों के आकार पर बाध्य

टिप्पणियाँ

  1. 1.0 1.1 Thurston (1978–1981), Chap. 13.
  2. 2.0 2.1 2.2 2.3 2.4 Stephenson (1999).
  3. Beardon & Stephenson 1991, Carter & Rodin 1992
  4. Colin de Verdière 1991
  5. Lipton & Tarjan (1979)
  6. Miller et al. (1997)
  7. Benjamini & Schramm (2001)
  8. Jonnason & Schramm (2000)
  9. Kelner (2006)
  10. Malitz & Papakostas (1994).
  11. Keszegh, Pach & Pálvölgyi (2011).
  12. Brightwell & Scheinerman (1993)
  13. Coxeter, H. S. M. (2006), "An absolute property of four mutually tangent circles", Non-Euclidean geometries, Math. Appl. (N. Y.), vol. 581, New York: Springer, pp. 109–114, doi:10.1007/0-387-29555-0_5, MR 2191243.
  14. Bowers, Philip L.; Stephenson, Kenneth (2004), "8.2 Inversive distance packings", Uniformizing dessins and Belyĭ maps via circle packing, Memoirs of the American Mathematical Society, vol. 170, pp. 78–82, doi:10.1090/memo/0805, MR 2053391.
  15. 15.0 15.1 Koebe (1936)
  16. Harrington (1982)
  17. Brandt (1980)
  18. Emch, Arnold (1910), "Sur quelques exemples mathématiques dans les sciences naturelles.", L'Enseignement mathématique (in français), 12: 114–123
  19. Rodin & Sullivan (1987)


संदर्भ


बाहरी संबंध