रोयर ऑसिलेटर

From Vigyanwiki
Revision as of 17:38, 14 March 2023 by alpha>SprashM

एक रॉयर दोलित्र एक इलेक्ट्रॉनिक विश्राम दोलित्र है जो मुख्य पावर पथ में एक संतृप्त रिएक्टर | संतृप्त-कोर ट्रांसफार्मर को नियोजित करता है। इसका आविष्कार और पेटेंट अप्रैल 1954 में रिचर्ड एल. ब्राइट और जॉर्ज एच. रॉयर द्वारा किया गया था, जो पेटेंट पर सह-आविष्कारक के रूप में सूचीबद्ध हैं।[1] इसमें सादगी, कम घटक गणना, आयत तरंग और ट्रांसफार्मर अलगाव के फायदे हैं। प्रतिवर्तित्र होने के साथ-साथ, इसका उपयोग गैल्वेनिक रूप से पृथक दिष्ट-धारा-दिष्ट-धारा कनवर्टर के रूप में किया जा सकता है जब ट्रांसफॉर्मर आउटपुट कुंडलन एक उपयुक्त अदिष्टकारी चरण से जुड़ा होता है, इस स्थिति में परिणामी उपकरण को सामान्य रूप से रॉयर संपरिवर्तित्र कहा जाता है।

इसके कुछ नुकसान हैं, सबसे उल्लेखनीय यह है कि इसका आउटपुट विद्युत-दाब (आयाम और आवृत्ति दोनों) इनपुट विद्युत-दाब पर दृढ़ता से निर्भर है, और रॉयर द्वारा पेटेंट किए गए मूल डिजाइन में महत्वपूर्ण बदलाव किए बिना इसे दूर नहीं किया जा सकता है। अन्य नुकसान यह है कि ट्रांसफॉर्मर में बिजली की हानि बहुत महत्वपूर्ण हो सकती है क्योंकि इसे डिजाइन आवृत्ति पर अधिकतम (संतृप्त) चुंबकीय प्रवाह घनत्व पर काम करना चाहिए। इसलिए, ट्रांसफॉर्मर रोयर प्रतिवर्तित्र का एक महत्वपूर्ण घटक है जिसका प्रभाव (ए) इसके कार्य (आउटपुट विद्युत-दाब का आयाम और आवृत्ति) पर पड़ता है, और (बी) यह उस कार्य (समग्र दक्षता) को कितनी अच्छी तरह करता है।

विवरण

रोयर दोलित्र परिपथ
55 हर्ट्ज दिष्ट-धारा-प्रत्यावर्ती धारा प्रतिवर्तित्र

रॉयर दोलित्र परिपथ में एक सैचुरेबल रिएक्टर | सैचुरेबल-कोर ट्रांसफॉर्मर होता है जिसमें सेंटर-टैप्ड प्राइमरी कुंडलन, एक फीडबैक कुंडलन और (वैकल्पिक रूप से) माध्यमिक कुंडलन होती है। प्राथमिक के दो हिस्सों को पुश-पुल कनवर्टर|पुश-पुल कॉन्फ़िगरेशन में दो ट्रांजिस्टर द्वारा संचालित किया जाता है। फीडबैक कुंडलन [[सकारात्मक प्रतिक्रिया]] प्रदान करने के लिए ट्रांसफॉर्मर पावर की एक छोटी मात्रा को वापस ट्रांजिस्टर बेस में जोड़ता है, जिससे दोलन उत्पन्न होता है। दोलन आवृत्ति अधिकतम चुंबकीय प्रवाह घनत्व, बिजली आपूर्ति विद्युत-दाब और प्राथमिक कुंडलन के अधिष्ठापन द्वारा निर्धारित की जाती है।

बेसिक रोयर स्क्वेर वेव आउटपुट विद्युत-दाब उत्पन्न करता है, [2] जो कुछ अनुप्रयोगों के लिए फायदेमंद हो सकता है। इस वर्ग तरंग आउटपुट विद्युत-दाब को एक उपयुक्त दिष्टकारी चरण (सामान्य रूप से एक डायोड फुल-वेव ब्रिज जिसके बाद एक फिल्टर चोक और स्मूथिंग कैपेसिटर होता है) से गुजारकर निरंतर विद्युत-दाब (DC) में परिवर्तित किया जा सकता है।

यह परिपथ दो राज्यों के बीच स्विच करने के लिए पूरी तरह से चुंबकीय कोर संतृप्ति पर निर्भर करता है, जिसके तीन (3) महत्वपूर्ण परिणाम हैं: -

सबसे पहले, हिस्टैरिसीस नुकसान के कारण कोर में बिजली की हानि अधिक होती है, जिससे बिजली रूपांतरण दक्षता कम हो जाती है। चुंबकीय सामग्री में बिजली की हानि 2 और 3 के बीच की शक्ति के लिए उठाए गए चरम प्रवाह-घनत्व के समानुपाती होती है, और आवृत्ति 1 और 2 के बीच की शक्ति तक बढ़ जाती है, स्टाइनमेट्ज़ के समीकरण का संदर्भ लें।

दूसरे, संचालन की आवृत्ति की ऊपरी सीमा होती है। यह व्यावहारिक रॉयर संपरिवर्तित्र्स को समान पावर रेटिंग्स के स्विच-मोड ऊर्जा आपूर्ति के अधिक आधुनिक उदाहरणों की तुलना में बड़ा और भारी बनाता है जो बहुत अधिक आवृत्तियों पर काम करते हैं।

तीसरा, यह उपयुक्त कोर सामग्री की पसंद को सीमित करता है, यहां कुछ सामान्य सामग्रियों की सूची दी गई है (बिजली हानि घनत्व पर ध्यान दें):

मुख्य सामग्री संतृप्ति प्रवाह घनत्व / G 50 किलोहर्ट्ज़ पर मुख्य हानि W/cm3
तोशिबा एमबी 6000 0.49
मेटग्लास2714A 6000 0.62
वर्ग परमेलॉय 80 (0.5 मील) 7800 0.98
वर्ग परमेलॉय 80 (1 मील) 7800 4.2
फेराइट प्रकार 84 4000 4


अनुप्रयोग

कुछ दिष्ट-धारा-प्रत्यावर्ती धारा इनवर्टर में उत्कृष्ट रॉयर दोलित्र परिपथ का उपयोग किया जाता है जहां लोड के लिए वर्ग तरंग आउटपुट स्वीकार्य है। 1970 के दशक में DC-DC संपरिवर्तित्र फॉर्म (रॉयर संपरिवर्तित्र) काफी लोकप्रिय था, उस समय के समय इसे सामान्य रूप से बाइपोलर ट्रांजिस्टर के साथ प्रयुक्त किया गया था।[3] हालांकि, ऊपर बताए गए नुकसान के कारण बिजली का स्तर सामान्य रूप से कुछ सौ वाट से कम तक सीमित होता है।

संस्करण और सुधार

जेन्सेन दोलित्र/कनवर्टर

स्विचिंग ट्रांजिस्टर को केवल नियंत्रण संकेत प्रदान करने के लिए एक अलग संतृप्त चुंबकीय कोर का उपयोग करके, मुख्य ट्रांसफार्मर को अब संतृप्त करने की आवश्यकता नहीं है और इसलिए इसकी बिजली हानि काफी कम हो सकती है। चूंकि जोड़ा गया ट्रांसफॉर्मर मुख्य ट्रांसफॉर्मर की तुलना में बहुत छोटा होता है, इसलिए संतृप्ति में संचालन के कारण इसका बिजली नुकसान मुख्य ट्रांसफॉर्मर को संतृप्ति में संचालित करने की तुलना में बहुत कम बिजली नुकसान होता है। इसके परिणामस्वरूप समग्र कनवर्टर दक्षता में महत्वपूर्ण सुधार हुआ है और दिष्ट-धारा-प्रत्यावर्ती धारा इनवर्टर और दिष्ट-धारा-दिष्ट-धारा संपरिवर्तित्र्स के बहुत अधिक बिजली रेटिंग के कार्यान्वयन की स्वीकृति मिलती है। इसके अतिरिक्त, डिजाइनर अब उपयुक्त घटकों और सामग्रियों की एक विस्तृत श्रृंखला से मुख्य ट्रांसफॉर्मर का चयन या डिजाइन करने के लिए स्वतंत्र है। यह सुधार पहली बार 1955 में जेन्सेन द्वारा पेटेंट कराया गया था, रॉयर द्वारा 06-अप्रैल-1954 को अपना पेटेंट दायर करने के ठीक 16 महीने बाद। (यूएस पेटेंट #2774878 देखें, 29-अगस्त-1955 दायर)।

धारा-फेड रॉयर/जेन्सेन संपरिवर्तित्र

मूल रॉयर दोलित्र की एक खामी यह है कि स्विचिंग ट्रांजिस्टर पर तनाव स्विचिंग ट्रांज़िशन समय के समय अधिक होता है (यह वह समय है जब ट्रांजिस्टर स्विच या तो स्थिति बदल रहा है (ए) ऑफ से ऑन, या (बी) ऑन से ऑफ ). इस समय के समय, ट्रांजिस्टर एक साथ उच्च विद्युत-दाब और उच्च धारा दोनों का अनुभव करते हैं, जिससे ट्रांजिस्टर के अंदर उच्च तात्कालिक शक्ति अपव्यय होता है। इनपुट ऊर्जा आपूर्ति और ट्रांसफॉर्मर सेंटर टैप के बीच एक प्रारंभ करनेवाला डालकर इस कमी को दूर किया जाता है। यह प्रारंभ करनेवाला केंद्र-टैप विद्युत-दाब को पूर्वोक्त स्विचिंग ट्रांज़िशन समय के समय इनपुट धारा को अपेक्षाकृत स्थिर रखते हुए (इसलिए नाम धारा-फेड) रखने की स्वीकृति देता है, इस प्रकार प्रत्येक ट्रांजिस्टर में विद्युत-दाब को कम करने की स्वीकृति देता है जबकि धारा को एक से स्थानांतरित किया जाता है। ट्रांजिस्टर दूसरे के लिए, जिससे ट्रांजिस्टर तात्कालिक बिजली अपव्यय को बहुत कम कर देता है। इस उन्नत संस्करण को कुछ पुस्तकों में धारा-फेड रॉयर दोलित्र कहा जाता है।[4] इस सुधार के अधिकांश उदाहरणों में, यह डिज़ाइनर जानबूझकर इस प्रारंभ करनेवाला (हेनरी की इकाइयाँ, https://en.wikipedia.org/wiki/Henry_(unit)) के अधिष्ठापन मूल्य का चयन करता है ताकि पर्याप्त रूप से बड़ा हो सके ताकि इसमें प्रवाहित होने वाली धारा प्रारंभ करनेवाला अपेक्षाकृत स्थिर है; सामान्य रूप से धारा में एक छोटा रिपल घटक होता है, कहते हैं, औसत मूल्य के 30% से कम का पीक-टू-पीक रिपल। ऐसे मामलों में, इस प्रेरक को दिष्ट-धारा चोक या सिर्फ चोक कहा जाता है, चोक (इलेक्ट्रॉनिक्स) देखें।

यह सुधार ऊपर बताए गए जेन्सेन संपरिवर्तित्र पर भी प्रयुक्त हो सकता है।

विनियमित धारा-फेड रॉयर/जेन्सेन संपरिवर्तित्र

एक और शोधन इनपुट विद्युत-दाब स्रोत और चोक (प्रारंभ करनेवाला) के बीच एक स्टेप-डाउन कनवर्टर का जोड़ है। इस स्टेप-डाउन संपरिवर्तित्र का उपयोग चोक में प्रवाहित धारा को नियंत्रित करने के लिए किया जा सकता है, जिससे आउटपुट विद्युत-दाब को नियंत्रित किया जा सकता है। यह परिशोधन, निश्चित रूप से, मूल रोयर और जेन्सेन संस्करण दोनों के लिए समान प्रभावशीलता के साथ प्रयुक्त किया जा सकता है। इसका एक प्रारंभिक उदाहरण जोन्स द्वारा यू.एस. पेटेंट में पाया जा सकता है, दायर 05-सितंबर-1980, यू.एस. 4,344,122।

बाद के विकास

प्रौद्योगिकी हमेशा आगे बढ़ रही है, और स्व-दोलन परिपथ का विकास इस संबंध में अलग नहीं है। 1959 में, रॉयर दोलित्र के पेटेंट और प्रकाशित होने के कुछ ही वर्षों बाद, एक नए दोलित्र का आविष्कार किया गया था जिसे सामान्य रूप से बैक्सैंडल प्रतिवर्तित्र/कनवर्टर के रूप में संदर्भित किया जाता है क्योंकि इसे पीटर जेम्स बैक्संडल (पीटर बचंडल देखें), (जीबी पेटेंट देखें) द्वारा पेटेंट कराया गया था। 959,550, दायर 13-Mar-1959), और शुरुआत में उनके द्वारा 1959 के सम्मेलन पत्र में प्रकाशित किया गया था [5] जो स्पष्ट रूप से इसके संचालन का वर्णन करता है। हालांकि बैक्सैंडल प्रतिवर्तित्र/कनवर्टर वास्तव में अपने स्वयं के विकिपीडिया लेख के योग्य है, यहाँ इसका संक्षेप में उल्लेख किया गया है क्योंकि इसे कभी-कभी गुंजयमान रॉयर के रूप में संदर्भित किया जाता है; हालाँकि, जैसा कि निम्नलिखित दिखाएगा, यह एक मिथ्या नाम है क्योंकि इसके संचालन का सिद्धांत मूल रोयर से पूरी तरह अलग है।

सिनवेव दोलित्र (बैक्संडल, उर्फ ​​रेजोनेंट रॉयर बनाम ओरिजिनल रॉयर)

एक अन्य सेल्फ़-ऑसिलेटिंग प्रतिवर्तित्र/कनवर्टर डिज़ाइन है जिसे बैक्सैंडल संपरिवर्तित्र (कभी-कभी गलत तरीके से रेज़ोनेंट रॉयर कहा जाता है) के रूप में जाना जाता है, जो एक वर्ग तरंग विद्युत-दाब के बजाय एक साइनवेव आउटपुट विद्युत-दाब उत्पन्न करता है, जिसका उपयोग दिष्ट-धारा-दिष्ट-धारा रूपांतरण के लिए भी किया जाता है जब एक से जुड़ा होता है। उपयुक्त सुधारक चरण। यह पहली बार 1959 में पीटर जेम्स बैक्संडल [1] द्वारा वर्णित किया गया था (GB पेटेंट 959,550 देखें, 13-Mar-1959 दायर किया गया)। रॉयर दोलक और बैक्संडल दोलक के बीच तीन प्रमुख अंतर हैं, इन अंतरों को बिजली रूपांतरण के क्षेत्र में उनके आवेदन के संदर्भ में नीचे समझाया गया है (दिष्ट-धारा-प्रत्यावर्ती धारा [2], या दिष्ट-धारा-दिष्ट-धारा [3])।

थंबसबसे पहले, एक चोक (प्रारंभ करनेवाला) ट्रांसफार्मर प्राथमिक नल को आपूर्ति विद्युत-दाब के साथ श्रृंखला में जुड़ा हुआ है। ऊपर बताए गए रॉयर के धारा-फेड वेरिएंट के अनुसार, यह बैक्संडल प्रतिवर्तित्र को धारा-फेड बनाता है।

दूसरे, ट्रांसफॉर्मर के समानांतर एक कैपेसिटर जोड़कर एक गुंजयमान टैंक परिपथ बनाया जाता है, या तो स्विचिंग ट्रांजिस्टर के पार प्राथमिक तरफ, या आउटपुट कुंडलन में द्वितीयक तरफ, या दोनों का संयोजन होता है। इस परिवर्तन का अर्थ है कि बैक्संडल आउटपुट विद्युत-दाब एक साइन-वेव (साइन लहर देखें) है, जबकि उत्कृष्ट रोयर परिपथ आउटपुट विद्युत-दाब एक स्क्वायर वेव (स्क्वायर वेव देखें) है।

अंत में, तीसरा प्रमुख अंतर यह है कि ट्रांसफॉर्मर संतृप्त नहीं होता है या नहीं होना चाहिए। दो ट्रांजिस्टर के बीच स्विच करना केवल प्राकृतिक अनुनाद के माध्यम से लाया जाता है जो एक प्रारंभ करनेवाला और एक संधारित्र के बीच होता है, और चुंबकीय घटक की संतृप्ति से नहीं। यह इन दो दोलित्र्स के बीच मूलभूत अंतर है: रॉयर एक चुंबकीय घटक (संदर्भ संतृप्ति (चुंबकीय)) की संतृप्ति के कारण स्व-दोलन करता है, जबकि एल-सी अनुनाद (अनुनाद देखें) के कारण बैक्सडॉल स्व-दोलन करता है।

संचालन

जब एक ट्रांजिस्टर चालू होता है, तो इसका कलेक्टर विद्युत-दाब शून्य के करीब होता है और यह इनपुट चोक की धारा को प्राथमिक कुंडलन में से एक में निर्देशित करता है। वहीं, दूसरा ट्रांजिस्टर ऑफ है, इसका धारा शून्य है जबकि इसका विद्युत-दाब हाफ-साइन (पीक = विन * पीआई) है। ट्रांजिस्टर बारी-बारी से ट्रांसफार्मर की प्रत्येक प्राथमिक कुंडलन में इनपुट धारा को निर्देशित करते हैं। प्राथमिक कुंडलन में विरोधी धाराएं हमेशा संतुलित रहती हैं लेकिन संपूर्ण प्राथमिक पूरी साइनवेव को देखती है। इस तरह, ट्रांजिस्टर को पुश-पुल मोड में बारी-बारी से पूरी तरह से चालू और बंद करने की स्वीकृति देते हुए एक साइनवेव उत्पन्न करने में सक्षम होता है। यह रोयेर परिवर्तक से एकमात्र समानता है।

ट्रांसफॉर्मर सेंटर-टैप नोड पर विद्युत-दाब ऊपर और नीचे झूलता है क्योंकि प्रारंभ करनेवाला धारा परिवर्तन का विरोध करता है। परिणामस्वरूप वेवफॉर्म एक फुल-वेव दिष्टकारी (सही करनेवाला देखें) के आउटपुट की तरह दिखाई देता है। डी.सी. आपूर्ति विद्युत-दाब औसत के बराबर है, इसलिए नल लगभग (पीआई/2) * वीसीसी पर चरम पर है। जैसा कि ट्रांसफार्मर प्राथमिक पर 2: 1 ऑटोट्रांसफॉर्मर की तरह काम करता है, ऑफ ट्रांजिस्टर कलेक्टर विद्युत-दाब दोगुना या पीआई गुना Vcc तक पहुंच जाता है।

आवेदन

बेल टेलीफोन प्रयोगशालाओं को सौंपे गए दिष्ट-धारा-दिष्ट-धारा कनवर्टर के लिए 1973 के पेटेंट में एक समान विचार को नियोजित करने वाला एक परिपथ दिखाई देता है।[6] जो दिलचस्प रूप से अनुनाद और चुंबकीय संतृप्ति दोनों का उपयोग करता है।

टेक्ट्रोनिक्स एनालॉग ऑसिलोस्कोप # टेक्ट्रोनिक्स 547 ऑसिलोस्कोप के कैथोड रे ट्यूब को चलाने में इस प्रकार के एक परिपथ का उपयोग किया गया था।[7] Baxandall संपरिवर्तित्र का एक अन्य अनुप्रयोग कोल्ड कैथोड फ्लोरोसेंट लैंप (CCFLs) को पॉवर देने में है, CCFL प्रतिवर्तित्र देखें। सीसीएफएल हार्मोनिक्स की उपस्थिति में अपने धारा-से-प्रकाश उत्पादन दक्षता में गिरावट प्रदर्शित करते हैं, इसलिए उन्हें स्क्वायर वेव की तुलना में साइनवेव के साथ ड्राइव करना बेहतर होता है।[8] प्रकाश तीव्रता समायोजन प्रदान करने के लिए, एक एकीकृत परिपथ सामान्य रूप से एक अतिरिक्त ट्रांजिस्टर के गेट में एक पल्स-चौड़ाई मॉडुलन | पल्स-चौड़ाई मॉड्यूलेटेड सिग्नल चलाता है, जिससे फीडिंग चोक के साथ एक स्टेप-डाउन (हिरन) कनवर्टर बनता है।[9] अन्य एकीकृत परिपथ दो दोलित्र ट्रांजिस्टर को भी नियंत्रित करते हैं और ऐसा करने के लिए ट्रांसफॉर्मर मिड टैप की शून्य घाटी को समझते हैं।[10] Baxandall संपरिवर्तित्र का उपयोग हाल ही में लो-विद्युत-दाब स्रोतों से फ्लोरोसेंट ट्यूब चलाने में किया गया है, अक्सर आपातकालीन प्रकाश व्यवस्था और कैंपिंग आदि के लिए रिचार्जेबल बैटरी का उपयोग किया जाता है। ऐसा लगता है कि कॉम्पैक्ट फ्लोरोसेंट लैंप (सीएफएल) के लिए यह संस्करण अधिकांश दो-ट्रांजिस्टर ड्राइवरों का अग्रदूत रहा है, जिसे हाल ही में कम विद्युत-दाब वाले एलईडी लैंप चलाने के लिए बढ़ाया गया है।

नामकरण भ्रम: बैक्संडल बनाम रेजोनेंट रॉयर

मूल रॉयर दोलित्र/प्रतिवर्तित्र सेल्फ-ऑसिलेटिंग परिपथ का एक उदाहरण है क्योंकि इसके संचालन की आवृत्ति पूरी तरह से बिजली के बाहरी स्रोत (इनपुट दिष्ट-धारा विद्युत-दाब) और कम से कम एक मुख्य पावर घटक द्वारा निर्धारित की जाती है जो पूरी शक्ति को संसाधित करता है। उपकरण के माध्यम से गुजरता है, नीचे नोट 1 देखें। सेल्फ-ऑसिलेटिंग इनवर्टर (और संपरिवर्तित्र्स) के अन्य उदाहरण हैं जिन्हें कभी-कभी एक ही नाम रॉयर (या उसके रूपांतर) द्वारा संदर्भित किया जाता है, इस तथ्य के बावजूद कि वे पूरी तरह से अलग सिद्धांतों द्वारा संचालित होते हैं। Baxandall दोलक एक उल्लेखनीय उदाहरण है, क्योंकि इसे कभी-कभी गुंजयमान रॉयर, या स्व-प्रतिध्वनि रॉयर, या एलसी रॉयर के रूप में संदर्भित किया जाता है, लेकिन इसके संचालन का चुंबकीय संतृप्ति से कोई लेना-देना नहीं है, जिस पर रॉयर निर्भर करता है, यह सिद्धांत पर काम करता है विद्युत ऊर्जा की प्राकृतिक प्रतिध्वनि जो उनके गैर-संतृप्त अवस्था में काम करने वाले प्रेरकों और कैपेसिटर के बीच होती है। Baxandall oscillator में चुंबकीय संतृप्ति सामान्य रूप से अत्यधिक अवांछनीय होती है, और वास्तव में, अधिकांश बिजली रूपांतरण उपकरण के डिजाइनर इससे बचने के लिए बहुत सावधानी बरतते हैं। तथ्य यह है कि मूल रोयर अपने मुख्य पावर ट्रांसफॉर्मर कोर के चुंबकीय संतृप्ति का उपयोग संचालन के मुख्य सिद्धांत के रूप में करता है, जो पिछले कुछ दशकों में बिजली रूपांतरण के क्षेत्र में नियोजित परिपथ की विस्तृत श्रृंखला के बीच काफी अनूठा बनाता है; इसलिए इसका नाम अन्य बिजली रूपांतरण परिपथों पर लापरवाही से प्रयुक्त नहीं किया जाना चाहिए जो समान सिद्धांत पर भरोसा नहीं करते हैं।

दुर्भाग्य से, यह नामकरण भ्रम आधुनिक साहित्य में प्रचलित हो गया है (उदाहरण के लिए, डेटाशीट्स [11]), और परिपथ डिजाइन की कला के दो उच्च सम्मानित चिकित्सकों के बीच इस आदान-प्रदान के विषयों में से एक है।[12] रॉयर दोलक स्व-दोलन परिपथ के शुरुआती उदाहरणों में से एक था जो व्यापक रूप से उपयोग और लोकप्रिय हो गया था, इसलिए यह शायद समझ में आता है कि अगले दशकों में रॉयर नाम अन्य आत्म-दोलन परिपथों पर प्रयुक्त किया गया था। इसके अतिरिक्त, मुख्य बिजली ट्रांसफार्मर के चुंबकीय संतृप्ति के आधार पर स्व-ऑसिलेटिंग प्रतिवर्तित्र / संपरिवर्तित्र परिपथ लिखने की तुलना में रॉयर या रॉयर-क्लास शब्द अधिक सुविधाजनक है। हालांकि, हमें रॉयर नाम का गलत उपयोग करने से बचना चाहिए क्योंकि यह केवल भ्रम पैदा कर सकता है। इन परिपथों का पहली बार आविष्कार किए हुए अब 50 से अधिक वर्ष हो गए हैं, इसलिए रॉयर नाम केवल उन परिपथों पर प्रयुक्त किया जाना चाहिए जो मूल पेटेंट की अवधारणाओं का कड़ाई से पालन करते हैं।

रॉयर दोलित्र के लिए मूल पेटेंट पर दिखाई देने वाला पहला नाम रिचर्ड एल. ब्राइट है और रॉयर का नाम दूसरा है, फिर भी रॉयर दोलित्र को शायद ही कभी ब्राइट दोलित्र कहा जाता है। तुलनात्मक रूप से, बैक्संडल नाम पहले नाम के रूप में प्रकट होता है - वास्तव में, एकमात्र नाम - पेटेंट और प्रारंभिक प्रकाशन दोनों पर।

नोट 1: इसकी तुलना पावर-संपरिवर्तित्र परिपथ से करें जो स्व-दोलन नहीं कर रहे हैं, जहां संचालन की आवृत्ति मुख्य पावर घटकों से स्वतंत्र है और सामान्य रूप से एक सहायक नियंत्रण परिपथ द्वारा निर्धारित की जाती है जो मुख्य पावर के बीच किसी भी पावर ट्रांसफर में सम्मिलित नहीं है। उपकरण के बंदरगाह, जैसे: एक नियंत्रण चिप।

संदर्भ

  1. Royer oscillator circuit United States Patent 2783384
  2. Pressman et al., p. 266
  3. Mike Golio (2010). आरएफ और माइक्रोवेव हैंडबुक. CRC Press. p. 3–66. ISBN 978-1-4200-3676-3.
  4. Pressman et al., p. 271
  5. P.J. Baxandall, "Transistor Sine-Wave LC Oscillators", International Convention on Transistors and Associated Semiconductor Devices, 25 May 1959, fig 5, p. 751
  6. United States Patent 3818314 Fig. 3
  7. Jim Williams (1998). एनालॉग सर्किट डिजाइन की कला और विज्ञान. Newnes. p. 145. ISBN 978-0-08-049943-7.
  8. Williams (1998), p. 157
  9. "BiCMOS शीत कैथोड फ्लोरोसेंट लैंप चालक नियंत्रक" (PDF). Unitrode Products/Texas Instruments. Retrieved 30 August 2020. (includes UCC3973 data sheet)
  10. "गुंजयमान लैंप गिट्टी नियंत्रक" (PDF). Unitrode/Texas Instruments. Retrieved 30 August 2020. (UC3872 data sheet)
  11. https://datasheets.maximintegrated.com/en/ds/MAX1739-MAX1839.pdf
  12. EDN letter exchange "A Royer by any other name" between Bryce Hesterman and Jim Williams. Published on 21 November 1996


अग्रिम पठन

  • Abraham Pressman; Keith Billings; Taylor Morey (2009). Switching Power Supply Design, 3rd Ed. McGraw Hill Professional. pp. 266–278. ISBN 978-0-07-159432-5. Has a detailed analysis of the FET version of the (classic) Royer oscillator.
  • Johnson I. Agbinya, ed. (2012). Wireless Power Transfer. River Publishers. pp. 187–193. ISBN 978-87-92329-23-3. Contains an analytic derivation of the formulas for the Baxandall ("resonant Royer") circuit and a comparison with data measured from an actual circuit (using MOSFETs).
  • Royer, G. H. (1955). "A switching transistor D-C to A-C converter having an output frequency proportional to the D-C input voltage". Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. 74 (3): 322–326. doi:10.1109/TCE.1955.6372293. S2CID 51650425.. A 1955 paper by Royer on his circuit.
  • George Henry (2000), "LX1686 Direct Drive CCFL Inverter Design". Microsemi Application Note AN-13. Contains a critique of the Baxandall ("resonant Royer") as used in CCFL applications (and proposes another inverter design).