ऑर्थोगोनल बहुपद

From Vigyanwiki
Revision as of 16:44, 3 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Set of polynomials where any two are orthogonal to each other}} {{Use American English|date = March 2019}} गणित में, एक ऑर्थो...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक ऑर्थोगोनल बहुपद अनुक्रम बहुपदों का एक परिवार है जैसे कि अनुक्रम में कोई भी दो अलग-अलग बहुपद किसी आंतरिक उत्पाद के तहत एक दूसरे के लिए ओर्थोगोनालिटी हैं।

सबसे व्यापक रूप से इस्तेमाल किए जाने वाले ऑर्थोगोनल बहुपद शास्त्रीय ऑर्थोगोनल बहुपद हैं, जिनमें हर्मिट बहुपद, लैगुएरे बहुपद और जैकोबी बहुपद शामिल हैं। Gegenbauer बहुपद जैकोबी बहुपदों का सबसे महत्वपूर्ण वर्ग बनाते हैं; वे विशेष मामलों के रूप में चेबीशेव बहुपद, और लीजेंड्रे बहुपद शामिल हैं।

19वीं सदी के अंत में पफन्युटी चेबीशेव|पी द्वारा जारी अंशों के अध्ययन से ऑर्थोगोनल बहुपदों के क्षेत्र का विकास हुआ। एल. चेबीशेव और एंड्री मार्कोव द्वारा पीछा किया गया|ए. ए. मार्कोव और थॉमस जॉन्स स्टिल्टजेस|टी. जे स्टिल्टजेस। वे विभिन्न प्रकार के क्षेत्रों में दिखाई देते हैं: संख्यात्मक विश्लेषण (गाऊसी चतुर्भुज), संभाव्यता सिद्धांत, प्रतिनिधित्व सिद्धांत (झूठे समूह, क्वांटम समूह और संबंधित वस्तुओं का), गणनात्मक संयोजक, बीजगणितीय संयोजक, गणितीय भौतिकी (यादृच्छिक मैट्रिक्स का सिद्धांत, पूर्णांक) प्रणाली, आदि), और संख्या सिद्धांत। ऑर्थोगोनल बहुपदों पर काम करने वाले कुछ गणितज्ञों में गेबोर स्जेगो, सर्गेई नटनोविच बर्नस्टीन, नौम अखीजर, आर्थर एर्डेली, याकूब गेरोनिमस, वोल्फगैंग हैन, थिओडोर सियो चिहारा, मोर्ड इस्माइल, वलीद अल-सलाम, रिचर्ड आस्की और रेहुएल लोबेटो शामिल हैं।

वास्तविक माप के लिए 1-चर मामले की परिभाषा

किसी भी गैर-घटते कार्य को देखते हुए α वास्तविक संख्याओं पर, हम Lebesgue-Stiltjes समाकल को परिभाषित कर सकते हैं

एक समारोह का एफ। यदि यह समाकल सभी बहुपदों f के लिए परिमित है, तो हम बहुपदों f और g के युग्मों पर आंतरिक गुणनफल को इस प्रकार परिभाषित कर सकते हैं

यह संक्रिया सभी बहुपदों के सदिश स्थान पर एक धनात्मक अर्धनिश्चित आंतरिक उत्पाद स्थान है, और यदि फलन α में वृद्धि के अनंत बिंदु हैं तो यह सकारात्मक निश्चित है। यह सामान्य तरीके से ऑर्थोगोनलिटी की धारणा को प्रेरित करता है, अर्थात् दो बहुपद ऑर्थोगोनल हैं यदि उनका आंतरिक उत्पाद शून्य है।

फिर क्रम (Pn)
n=0
ऑर्थोगोनल बहुपद संबंधों द्वारा परिभाषित किया गया है

दूसरे शब्दों में, अनुक्रम एकपदी 1, x, x के अनुक्रम से प्राप्त किया जाता है2, ... इस आंतरिक उत्पाद के संबंध में ग्राम-श्मिट प्रक्रिया द्वारा।

आमतौर पर अनुक्रम को ऑर्थोनॉर्मल होना आवश्यक है, अर्थात्,

हालाँकि, अन्य सामान्यीकरण कभी-कभी उपयोग किए जाते हैं।

बिल्कुल निरंतर मामला

कभी-कभी हमारे पास होता है

कहाँ

कुछ अंतराल पर समर्थन के साथ एक गैर-नकारात्मक कार्य है [x1, x2] वास्तविक रेखा में (जहाँ x1 = −∞ और x2 = ∞ अनुमति दी जाती है)। इस तरह का एक W को वेट फंक्शन कहा जाता है।[1] फिर आंतरिक उत्पाद द्वारा दिया जाता है

हालांकि, ऑर्थोगोनल बहुपदों के कई उदाहरण हैं जहां माप (x) में गैर-शून्य माप वाले बिंदु होते हैं जहां फ़ंक्शन होता है α असंतुलित है, इसलिए वजन समारोह द्वारा नहीं दिया जा सकता है W ऊपरोक्त अनुसार।

ऑर्थोगोनल बहुपदों के उदाहरण

एक वास्तविक अंतराल में समर्थन के साथ माप के लिए सबसे अधिक इस्तेमाल किया जाने वाला ऑर्थोगोनल बहुपद ऑर्थोगोनल है। यह भी शामिल है:

  • शास्त्रीय ऑर्थोगोनल बहुपद (जैकोबी बहुपद, लैगुएरे बहुपद, हर्मिट बहुपद, और उनके विशेष मामले गेगेनबॉयर बहुपद, चेबीशेव बहुपद और लीजेंड्रे बहुपद)।
  • विल्सन बहुपद, जो जैकोबी बहुपदों का सामान्यीकरण करता है। वे कई ऑर्थोगोनल बहुपदों को विशेष मामलों के रूप में शामिल करते हैं, जैसे कि मेक्सनर-पोलकज़ेक बहुपद, [[निरंतर हैन बहुपद]], निरंतर दोहरी हान बहुपद, और क्लासिकल बहुपद, जो आस्की योजना द्वारा वर्णित हैं।
  • एस्की-विल्सन बहुपद विल्सन बहुपदों में एक अतिरिक्त पैरामीटर क्यू पेश करते हैं।

असतत ऑर्थोगोनल बहुपद कुछ असतत माप के संबंध में ऑर्थोगोनल हैं। कभी-कभी माप का परिमित समर्थन होता है, इस मामले में ऑर्थोगोनल बहुपदों का परिवार एक अनंत अनुक्रम के बजाय परिमित होता है। राका बहुपद असतत ऑर्थोगोनल बहुपदों के उदाहरण हैं, और विशेष मामलों के रूप में हन बहुपद और दोहरे हन बहुपद शामिल हैं, जो बदले में विशेष मामलों के रूप में मीक्सनर बहुपद, क्रावचौक बहुपद और चार्लीर बहुपद शामिल हैं।

मीक्सनर ने सभी ऑर्थोगोनल शेफ़र अनुक्रम को वर्गीकृत किया है: केवल हेर्माइट, लैगुएरे, चार्लीयर, मीक्सनर और मीक्सनर-पोलाकज़ेक हैं। कुछ अर्थों में क्रावचौक भी इस सूची में होना चाहिए, लेकिन वे एक परिमित अनुक्रम हैं। ये छह परिवार Natural_exponential_family#The_six_NEF-QVFs|NEF-QVFs के अनुरूप हैं और कुछ लेवी प्रक्रियाओं के लिए मार्टिंगेल_(संभाव्यता_सिद्धांत) बहुपद हैं। लेवी प्रक्रियाएं।

छलनी ऑर्थोगोनल बहुपद, जैसे छना हुआ अल्ट्रास्फेरिकल बहुपद, छना हुआ जैकोबी बहुपद, और छलनी पोलाज़ेक बहुपद, ने पुनरावृत्ति संबंधों को संशोधित किया है।

कोई जटिल विमान में कुछ वक्र के लिए ऑर्थोगोनल बहुपदों पर भी विचार कर सकता है। सबसे महत्वपूर्ण मामला (वास्तविक अंतराल के अलावा) तब होता है जब वक्र यूनिट सर्कल होता है, जो यूनिट सर्कल पर ऑर्थोगोनल बहुपद देता है, जैसे रोजर्स-सेगो बहुपद।

ऑर्थोगोनल बहुपदों के कुछ परिवार हैं जो त्रिकोण या डिस्क जैसे समतल क्षेत्रों पर ऑर्थोगोनल हैं। उन्हें कभी-कभी जैकोबी बहुपदों के संदर्भ में लिखा जा सकता है। उदाहरण के लिए, Zernike बहुपद यूनिट डिस्क पर ओर्थोगोनल हैं।

हर्मिट बहुपदों के विभिन्न आदेशों के बीच रूढ़िवादिता का लाभ सामान्यीकृत आवृत्ति विभाजन बहुसंकेतन (जीएफडीएम) संरचना पर लागू होता है। समय-आवृत्ति जाली के प्रत्येक ग्रिड में एक से अधिक प्रतीक ले जा सकते हैं।[2]


गुण

वास्तविक रेखा पर एक गैर-ऋणात्मक माप द्वारा परिभाषित एक चर के ऑर्थोगोनल बहुपदों में निम्नलिखित गुण होते हैं।

क्षण से संबंध

ऑर्थोगोनल बहुपद पीn पल के संदर्भ में व्यक्त किया जा सकता है (गणित)

निम्नलिखित नुसार:

जहां स्थिरांक सीn मनमाने हैं (पी के सामान्यीकरण पर निर्भर करते हैंn).

यह सीधे ग्राम-श्मिट प्रक्रिया को मोनोमियल्स पर लागू करने से आता है, प्रत्येक बहुपद को पिछले वाले के संबंध में ऑर्थोगोनल होने के लिए लागू करता है। उदाहरण के लिए, के साथ रूढ़िवादिता यह निर्धारित करता है रूप होना चाहिए

जिसे निर्धारक के साथ पहले दी गई अभिव्यक्ति के अनुरूप देखा जा सकता है।

पुनरावृत्ति संबंध

बहुपद पीn प्रपत्र के पुनरावृत्ति संबंध को संतुष्ट करें

जहाँ एकn0 नहीं है। विलोम भी सत्य है; Favard की प्रमेय देखें।

क्रिस्टोफेल-डार्बौक्स फॉर्मूला

शून्य

यदि माप dα एक अंतराल [a, b] पर समर्थित है, तो P के सभी शून्यn [ए, बी] में झूठ। इसके अलावा, शून्य में निम्नलिखित इंटरलेसिंग गुण होते हैं: यदि m < n, तो P का एक शून्य होता हैn P के किन्हीं दो शून्यों के बीचm. शून्य की इलेक्ट्रोस्टैटिक व्याख्या दी जा सकती है।[citation needed]

मिश्रित व्याख्या

1980 के दशक से, X. G. Viennot, J. Labelle, Y.-N. येह, डी. फोटा, और अन्य, सभी शास्त्रीय ऑर्थोगोनल बहुपदों के लिए संयोजी व्याख्याएं पाई गईं। [3]


अन्य प्रकार के ऑर्थोगोनल बहुपद

बहुभिन्नरूपी ऑर्थोगोनल बहुपद

मैकडोनाल्ड बहुपद कई चरों में ऑर्थोगोनल बहुपद हैं, जो एक सजातीय रूट सिस्टम की पसंद पर निर्भर करता है। वे विशेष मामलों के रूप में बहुभिन्नरूपी ऑर्थोगोनल बहुपदों के कई अन्य परिवारों को शामिल करते हैं, जिनमें जैक बहुपद, हॉल-लिटिलवुड बहुपद, हेकमैन-ओपडम बहुपद, और कोर्नविंदर बहुपद शामिल हैं। एस्की-विल्सन बहुपद रैंक 1 की एक निश्चित गैर-कम जड़ प्रणाली के लिए मैकडोनाल्ड बहुपदों का विशेष मामला है।

एकाधिक ऑर्थोगोनल बहुपद

एकाधिक ऑर्थोगोनल बहुपद एक चर में बहुपद होते हैं जो उपायों के परिमित परिवार के संबंध में ऑर्थोगोनल होते हैं।

सोबोलेव ऑर्थोगोनल बहुपद

ये सोबोलेव स्पेस इनर प्रोडक्ट के संबंध में ऑर्थोगोनल पॉलीनॉमियल हैं, यानी डेरिवेटिव के साथ एक आंतरिक उत्पाद। डेरिवेटिव सहित बहुपदों के लिए बड़े परिणाम हैं, सामान्य तौर पर वे शास्त्रीय ऑर्थोगोनल बहुपदों की कुछ अच्छी विशेषताओं को साझा नहीं करते हैं।

मैट्रिसेस के साथ ऑर्थोगोनल बहुपद

मेट्रिसेस वाले ऑर्थोगोनल पॉलीनॉमियल में या तो गुणांक होते हैं जो मैट्रिसेस होते हैं या अनिश्चित एक मैट्रिक्स होता है।

यह भी देखें

संदर्भ

  1. Demo of orthonormal polynomials obtained for different weight functions
  2. Catak, E.; Durak-Ata, L. (2017). "ऑर्थोगोनल बहुपदों के साथ आरोपित तरंगों के लिए एक कुशल ट्रांसीवर डिजाइन". IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom): 1–5. doi:10.1109/BlackSeaCom.2017.8277657. ISBN 978-1-5090-5049-9. S2CID 22592277.
  3. Viennot, Xavier (2017). "बायजेक्टिव कॉम्बिनेटरिक्स की कला, भाग IV, ऑर्थोगोनल बहुपदों का संयोजन सिद्धांत और निरंतर अंश।". Chennai: IMSc.