अंतर्वेशन (गणित)
गणित में, विसर्जन एक विभेदक बहुसंख्यक के बीच एक विभेदक कार्य है जिसका पुशफॉरवर्ड (विभेदक) हर जगह अंतःक्षेपक होता है।[1] स्पष्ट रूप से, f : M → N एक विसर्जन है अगर
M के प्रत्येक बिंदु p पर एक अंतःक्षेपी कार्य है (जहाँ TpX में एक बिंदु p पर बहुसंख्यक X के स्पर्शरेखा स्थान को दर्शाता है)। समतुल्य रूप से, f एक विसर्जन है यदि इसके व्युत्पन्न में M के परिमाण के बराबर निरंतर रैंक(अंतर टोपोलॉजी) है:[2]
कार्य f को अंतःक्षेपी होने की आवश्यकता नहीं है, केवल इसका व्युत्पन्न अंतःक्षेपी होना चाहिए।
विसर्जन से संबंधित अवधारणा एक अंत:स्थापन भी है। एक सुचारु अंत:स्थापन एक अंतःक्षेपी विसर्जन है f : M → N जो एक संस्थानिक अंत:स्थापन भी है, ताकि N की छवि में M भिन्न हो । विसर्जन एक निश्चित रूप से स्थानीय अंत:स्थापन है - यानी किसी भी बिंदु x ∈ M के लिए एक U ⊆ M, बिंदु x का प्रतिवेश(टोपोलॉजी) है और इस तरह, f : U → N एक अंत:स्थापन है, और इसके विपरीत एक स्थानीय अंत:स्थापन एक विसर्जन है।[3] कभी-कभी अनंत बहुसंख्यक परिमाण के लिए, इसे विसर्जन की परिभाषा के रूप में लिया जाता है।[4]
यदि M कॉम्पैक्ट है, तो अंतःक्षेपी विसर्जन एक अंत:स्थापन हो सकते है, लेकिन यदि M कॉम्पैक्ट नहीं है तो अंतःक्षेपी वाले विसर्जन को अंत:स्थापन नहीं हो सकते है। निरंतर आक्षेप बनाम समरूपता की तुलना करें।
नियमित समरूपता
कई गुना एम से कई गुना एन तक दो विसर्जन एफ और जी के बीच एक नियमित समरूपता को एक अलग कार्य के रूप में परिभाषित किया गया है H : M × [0,1] → N ऐसा है कि सभी टी के लिए [0, 1] कार्यक्रम Ht : M → N द्वारा परिभाषित Ht(x) = H(x, t) सभी के लिए x ∈ M एक विसर्जन है, साथ H0 = f, H1 = g. एक नियमित होमोटॉपी इस प्रकार विसर्जन के माध्यम से एक होमोटोपी है।
वर्गीकरण
हस्लर व्हिटनी ने 1940 के दशक में विसर्जन और नियमित होमोटोपियों के व्यवस्थित अध्ययन की शुरुआत की, यह साबित करते हुए कि 2m < n + 1 हर नक्शा {{nowrap|f : Mm → Nn}एक एम-डायमेंशनल मैनिफोल्ड का एक एन-डायमेंशनल मैनिफोल्ड एक विसर्जन के लिए होमोटोपिक है, और वास्तव में एक अंत:स्थापन के लिए 2m < n; ये व्हिटनी विसर्जन प्रमेय और व्हिटनी अंत:स्थापन प्रमेय हैं।
स्टीफन स्मेल ने निमज्जन की नियमित होमोटॉपी कक्षाओं को व्यक्त किया f : Mm → Rn एक निश्चित स्टिफ़ेल कई गुना के होमोटोपी समूहों के रूप में। गोले का फैलाव एक विशेष रूप से हड़ताली परिणाम था।
मॉरिस हिर्श ने किसी भी एम-डायमेंशनल मैनिफोल्ड एम के विसर्जन के नियमित होमोटॉपी वर्गों के होमोटॉपी सिद्धांत विवरण के लिए स्मेल की अभिव्यक्ति को सामान्यीकृत कियाm किसी भी n-डायमेंशनल मैनिफोल्ड N मेंएन.
विसर्जन के हिर्श-स्माइल वर्गीकरण को मिखाइल ग्रोमोव (गणितज्ञ) द्वारा सामान्यीकृत किया गया था।
अस्तित्व
एक विसर्जन के अस्तित्व के लिए प्राथमिक बाधा i : Mm → Rn एम का स्थिर सामान्य बंडल है, जैसा कि इसकी विशेषता वर्गों द्वारा पता लगाया गया है, विशेष रूप से इसकी स्टिफ़ेल-व्हिटनी कक्षाएं। अर्थात् 'र' सेn समानांतर कई गुना है, इसके स्पर्शरेखा बंडल का M पर पुलबैक तुच्छ है; चूँकि यह पुलबैक M, TM पर (आंतरिक रूप से परिभाषित) स्पर्शरेखा बंडल का प्रत्यक्ष योग है, जिसका आयाम m है, और विसर्जन i के सामान्य बंडल ν का, जिसका आयाम है n − m, M का codimension k विसर्जन होने के लिए, आयाम k का एक वेक्टर बंडल होना चाहिए, ξk, सामान्य बंडल ν के लिए खड़ा है, जैसे कि TM ⊕ ξk तुच्छ है। इसके विपरीत, इस तरह के एक बंडल को देखते हुए, इस सामान्य बंडल के साथ एम का विसर्जन इस बंडल के कुल स्थान के कोडिंग 0 विसर्जन के बराबर होता है, जो एक खुला कई गुना है।
स्थिर सामान्य बंडल सामान्य बंडलों और तुच्छ बंडलों का वर्ग है, और इस प्रकार यदि स्थिर सामान्य बंडल में कोहोलॉजिकल आयाम k है, तो यह k से कम आयाम के (अस्थिर) सामान्य बंडल से नहीं आ सकता है। इस प्रकार, स्थिर सामान्य बंडल का कोहोलॉजी आयाम, जैसा कि इसकी उच्चतम गैर-लुप्त होने वाली विशेषता वर्ग द्वारा पता चला है, विसर्जन के लिए एक बाधा है।
चूंकि विशेषता वर्ग सदिश बंडलों के प्रत्यक्ष योग के तहत गुणा करते हैं, इसलिए इस बाधा को अंतरिक्ष एम और इसके स्पर्शरेखा बंडल और कोहोलॉजी बीजगणित के संदर्भ में आंतरिक रूप से कहा जा सकता है। व्हिटनी द्वारा यह बाधा (स्पर्शरेखा बंडल के संदर्भ में, स्थिर सामान्य बंडल नहीं) कहा गया था।
उदाहरण के लिए, मोबियस पट्टी में गैर-तुच्छ स्पर्शरेखा बंडल है, इसलिए यह कोडिमेंशन 0 ('आर' में) में डूब नहीं सकता2), हालांकि यह कोडिमेंशन 1 में एम्बेड होता है (R3).
William S. Massey (1960) ने दिखाया कि ये विशेषता वर्ग (स्थिर सामान्य बंडल के स्टिफ़ेल-व्हिटनी वर्ग) डिग्री से ऊपर गायब हो जाते हैं n − α(n), कहाँ α(n) 1 अंकों की संख्या है जब n को बाइनरी में लिखा जाता है; यह सीमा तीक्ष्ण है, जैसा कि वास्तविक प्रक्षेप्य स्थान द्वारा महसूस किया गया है। इसने विसर्जन अनुमान को प्रमाण दिया, अर्थात् प्रत्येक एन-कई गुना को कोडिमेंशन में डुबोया जा सकता है n − α(n), यानी, आर में2n−α(n). यह अनुमान द्वारा सिद्ध किया गया था Ralph Cohen (1985).
कोडिमेंशन 0
Codimension 0 विसर्जन समान रूप से सापेक्ष आयाम 0 Submersion (गणित) हैं, और बेहतर रूप से Submersion के रूप में सोचा जाता है। एक बंद मैनिफोल्ड का कोडिमेंशन 0 विसर्जन ठीक एक कवरिंग नक्शा है, यानी 0-आयामी (असतत) फाइबर वाला एक फाइबर बंडल। डूबने पर एह्रेसमैन के प्रमेय और फिलिप्स के प्रमेय द्वारा, मैनिफोल्ड्स का एक उचित नक्शा निमज्जन एक फाइबर बंडल है, इसलिए कोडिमेंशन/सापेक्ष आयाम 0 विसर्जन/निमज्जन जलमग्नता की तरह व्यवहार करते हैं।
इसके अलावा, कोडिमेंशन 0 विसर्जन अन्य विसर्जन की तरह व्यवहार नहीं करते हैं, जो मोटे तौर पर स्थिर सामान्य बंडल द्वारा निर्धारित होते हैं: कोडिमेंशन 0 में मौलिक वर्ग और कवर रिक्त स्थान के मुद्दे हैं। उदाहरण के लिए, कोई कोडिमेंशन 0 विसर्जन नहीं है S1 → R1, वृत्त के समानांतर होने के बावजूद, जिसे सिद्ध किया जा सकता है क्योंकि रेखा का कोई मौलिक वर्ग नहीं है, इसलिए किसी को शीर्ष कोहोलॉजी पर आवश्यक नक्शा नहीं मिलता है। वैकल्पिक रूप से, यह डोमेन के व्युत्क्रम द्वारा है। इसी तरह, हालांकि एस3 और 3-टोरस टी3 दोनों समानांतर हैं, कोई विसर्जन नहीं है T3 → S3 - ऐसे किसी भी आवरण को कुछ बिंदुओं पर शाखाबद्ध करना होगा, क्योंकि गोला सरलता से जुड़ा हुआ है।
इसे समझने का एक और तरीका यह है कि कई गुना का कोडिमेंशन k विसर्जन एक k-डायमेंशनल वेक्टर बंडल के कोडिमेंशन 0 विसर्जन से मेल खाता है, जो कि ओपन मैनिफोल्ड है अगर कोडिमेंशन 0 से अधिक है, लेकिन कोडिमेंशन 0 में बंद मैनिफोल्ड ( अगर मूल कई गुना बंद है)।
एकाधिक बिंदु
विसर्जन का एक क-टपल बिंदु (डबल, ट्रिपल, आदि)। f : M → N एक अनियंत्रित सेट है {x1, ..., xk} अलग-अलग बिंदु xi ∈ M एक ही छवि के साथ f(xi) ∈ N. यदि एम एक एम-आयामी कई गुना है और एन एक विसर्जन के लिए एक एन-आयामी कई गुना है f : M → N सामान्य स्थिति में के-ट्यूपल बिंदुओं का सेट एक है (n − k(n − m))-आयामी कई गुना। प्रत्येक अंत:स्थापन कई बिंदुओं के बिना एक विसर्जन है (जहाँ k > 1). ध्यान दें, हालांकि, इसका विलोम गलत है: ऐसे अंतःक्षेपी वाले विसर्जन हैं जो अंत:स्थापन नहीं हैं।
एकाधिक बिंदुओं की प्रकृति निमज्जन को वर्गीकृत करती है; उदाहरण के लिए, समतल में एक वृत्त के निमज्जन को दोहरे बिंदुओं की संख्या के आधार पर नियमित होमोटॉपी तक वर्गीकृत किया जाता है।
शल्य चिकित्सा सिद्धांत में एक महत्वपूर्ण बिंदु पर यह तय करना आवश्यक है कि विसर्जन है या नहीं {{nowrap|f : Sm → N2m}2m-डायमेंशनल मैनिफोल्ड में एक m-sphere का एक अंत:स्थापन के लिए नियमित होमोटोपिक है, जिस स्थिति में इसे सर्जरी द्वारा खत्म किया जा सकता है। सी.टी.सी. मौलिक समूह वलय 'Z' के एक भागफल में f एक अपरिवर्तनीय μ(f) से जुड़ी दीवार [π1(एन)] जो एन के सार्वभौमिक कवर में एफ के दोहरे बिंदुओं की गणना करता है। के लिए m > 2, एफ एक अंत:स्थापन के लिए नियमित होमोटोपिक है अगर और केवल अगर μ(f) = 0 हस्लर व्हिटनी ट्रिक द्वारा।
एक से अधिक बिंदुओं के बिना अंत:स्थापन को विसर्जन के रूप में अध्ययन किया जा सकता है, क्योंकि विसर्जन को वर्गीकृत करना आसान होता है। इस प्रकार, कोई विसर्जन से शुरू कर सकता है और कई बिंदुओं को खत्म करने का प्रयास कर सकता है, यह देखते हुए कि क्या कोई अन्य विशिष्टताएं पेश किए बिना ऐसा कर सकता है - कई संयोजनों का अध्ययन करना। यह पहली बार एंड्रे हैफ्लिगर द्वारा किया गया था, और यह दृष्टिकोण कोडिमेंशन 3 या अधिक में उपयोगी है - सर्जरी सिद्धांत के दृष्टिकोण से, यह कोडिमेंशन 2 के विपरीत उच्च (को)आयाम है, जो गाँठ सिद्धांत के रूप में गाँठ आयाम है। यह थॉमस गुडविली, जॉन क्लेन द्वारा फंक्शनलर्स की कलन के माध्यम से स्पष्ट रूप से अध्ययन किया गया है , और Michael S. Weiss।
उदाहरण और गुण
* k पंखुड़ियों वाला एक गणितीय गुलाब (गणित) एक एकल k-ट्यूपल बिंदु के साथ समतल में वृत्त का विसर्जन है; k कोई भी विषम संख्या हो सकती है, लेकिन यदि 4 का गुणक भी होना चाहिए, तो k = 2 के साथ आंकड़ा 8, गुलाब नहीं है।
- क्लेन बोतल, और अन्य सभी गैर-उन्मुख बंद सतहों को 3-स्पेस में डुबोया जा सकता है लेकिन एम्बेड नहीं किया जा सकता है।
- व्हिटनी-ग्रौस्टीन प्रमेय द्वारा, विमान में सर्कल के विसर्जन के नियमित होमोटॉपी वर्गों को घुमावदार संख्या द्वारा वर्गीकृत किया जाता है, जो कि बीजगणितीय रूप से गिने जाने वाले दोहरे बिंदुओं की संख्या भी है (अर्थात संकेतों के साथ)।
- क्षेत्र का फैलाव: मानक अंत:स्थापन f0 : S2 → R3 से संबंधित है f1 = −f0 : S2 → R3 निमज्जन की एक नियमित समरूपता द्वारा ft : S2 → R3.
- लड़के की सतह 3-अंतरिक्ष में वास्तविक प्रक्षेपी तल का विसर्जन है; इस प्रकार गोले का 2-टू-1 विसर्जन भी।
- मोरिन सतह गोले का विसर्जन है; यह और बॉय की सतह दोनों गोलाकार विचलन में मिडवे मॉडल के रूप में उत्पन्न होती हैं।
डूबे हुए समतल वक्र
डूबे हुए समतल वक्रों में एक अच्छी तरह से परिभाषित मोड़ संख्या होती है, जिसे कुल वक्रता को 2 से विभाजित करके परिभाषित किया जा सकता हैπ. व्हिटनी-ग्रौस्टीन प्रमेय द्वारा यह नियमित होमोटॉपी के तहत अपरिवर्तनीय है - स्थलीय रूप से, यह गॉस का नक्शा की डिग्री है, या मूल के बारे में इकाई स्पर्शरेखा (जो गायब नहीं होती) की घुमावदार संख्या है। इसके अलावा, यह इनवेरिएंट्स का एक पूरा सेट है - समान टर्निंग नंबर वाले कोई भी दो प्लेन वक्र नियमित होमोटोपिक हैं।
हर डूबा हुआ समतल वक्र चौराहे के बिंदुओं को अलग करके एक एम्बेडेड अंतरिक्ष वक्र में ले जाता है, जो उच्च आयामों में सही नहीं है। अतिरिक्त डेटा (जो किनारा शीर्ष पर है) के साथ, विसर्जित विमान वक्र गाँठ आरेख उत्पन्न करते हैं, जो गाँठ सिद्धांत में केंद्रीय रुचि रखते हैं। जबकि विसर्जित विमान वक्र, नियमित होमोटोपी तक, उनकी मोड़ संख्या से निर्धारित होते हैं, नॉट्स में बहुत समृद्ध और जटिल संरचना होती है।
=== 3-स्पेस === में डूबी हुई सतहें 3-स्पेस में विसर्जित सतहों का अध्ययन 4-स्पेस में नॉटेड (एम्बेडेड) सतहों के अध्ययन से निकटता से जुड़ा हुआ है, नॉट डायग्राम के सिद्धांत के अनुरूप (3 में नॉटेड कर्व्स के प्रोजेक्शन के रूप में डूबे हुए प्लेन कर्व्स (2-स्पेस) -स्पेस): 4-स्पेस में एक नॉटेड सतह दी गई है, कोई इसे 3-स्पेस में एक डूबे हुए सतह पर प्रोजेक्ट कर सकता है, और इसके विपरीत, 3-स्पेस में एक डूबे हुए सतह को देखते हुए, कोई पूछ सकता है कि क्या यह 4-स्पेस में लिफ्ट करता है - है यह 4-अंतरिक्ष में एक गांठदार सतह का प्रक्षेपण है? यह इन वस्तुओं के बारे में प्रश्नों को संबंधित करने की अनुमति देता है।
एक मूल परिणाम, समतल वक्रों के मामले के विपरीत, यह है कि प्रत्येक डूबी हुई सतह एक गांठदार सतह तक नहीं उठती है।[5] कुछ मामलों में बाधा 2-मरोड़ है, जैसे कि कोस्चोर्क का उदाहरण,[6] जो एक डूबी हुई सतह है (3 मोबियस बैंड से निर्मित, एक ट्रिपपॉइंट (बहुविकल्पी) के साथ) जो एक गाँठ वाली सतह तक नहीं उठती है, लेकिन इसमें एक दोहरा आवरण होता है जो लिफ्ट करता है। में विस्तृत विश्लेषण दिया गया है Carter & Saito (1998a), जबकि एक और हालिया सर्वेक्षण में दिया गया है Carter, Kamada & Saito (2004).
सामान्यीकरण
निमज्जन सिद्धांत का एक दूरगामी सामान्यीकरण होमोटॉपी सिद्धांत है: एक आंशिक अंतर संबंध (पीडीआर) के रूप में विसर्जन की स्थिति (व्युत्पन्न का रैंक हमेशा k होता है) पर विचार किया जा सकता है, क्योंकि इसे फ़ंक्शन के आंशिक डेरिवेटिव के संदर्भ में कहा जा सकता है। फिर स्मेल-हिर्श निमज्जन सिद्धांत परिणाम है कि यह होमोटॉपी सिद्धांत को कम कर देता है, और होमोटॉपी सिद्धांत पीडीआर को होमोटोपी सिद्धांत में कम करने के लिए सामान्य स्थितियां और कारण देता है।
यह भी देखें
- डूबे हुए सबमनीफोल्ड
- आइसोमेट्रिक विसर्जन
- निमज्जन (गणित)
टिप्पणियाँ
- ↑ This definition is given by Bishop & Crittenden 1964, p. 185, Darling 1994, p. 53, do Carmo 1994, p. 11, Frankel 1997, p. 169, Gallot, Hulin & Lafontaine 2004, p. 12, Kobayashi & Nomizu 1963, p. 9, Kosinski 2007, p. 27, Szekeres 2004, p. 429.
- ↑ This definition is given by Crampin & Pirani 1994, p. 243, Spivak 1999, p. 46.
- ↑ This kind of definition, based on local diffeomorphisms, is given by Bishop & Goldberg 1968, p. 40, Lang 1999, p. 26.
- ↑ This kind of infinite-dimensional definition is given by Lang 1999, p. 26.
- ↑ Carter & Saito 1998; Carter, Kamada & Saito 2004, Remark 1.23, p. 17
- ↑ Koschorke 1979
संदर्भ
- Adachi, Masahisa (1993), Embeddings and immersions, translated by Kiki Hudson, ISBN 978-0-8218-4612-4
- Arnold, V. I.; Varchenko, A. N.; Gusein-Zade, S. M. (1985), Singularities of Differentiable Maps: Volume 1, Birkhäuser, ISBN 0-8176-3187-9
- Bishop, Richard Lawrence; Crittenden, Richard J. (1964), Geometry of manifolds, New York: Academic Press, ISBN 978-0-8218-2923-3
- Bishop, R. L.; Goldberg, S. I. (1968), Tensor Analysis on Manifolds (First Dover 1980 ed.), The Macmillan Company, ISBN 0-486-64039-6
- Bruce, J. W.; Giblin, P. J. (1984), Curves and Singularities, Cambridge University Press, ISBN 0-521-42999-4
- Carter, J. Scott; Saito, Masahico (1998a), "Surfaces in 3-space that do not lift to embeddings in 4-space", Knot theory (Warsaw, 1995), Banach Center Publ., vol. 42, Polish Acad. Sci., Warsaw, pp. 29–47, CiteSeerX 10.1.1.44.1505, MR 1634445.
- Carter, J. Scott; Saito, Masahico (1998), Knotted Surfaces and Their Diagrams, Mathematical Surveys and Monographs, vol. 55, p. 258, ISBN 978-0-8218-0593-0
- Carter, Scott; Kamada, Seiichi; Saito, Masahico (2004), Surfaces in 4-space, Encyclopaedia of Mathematical Sciences, vol. 142, Berlin: Springer-Verlag, doi:10.1007/978-3-662-10162-9, ISBN 3-540-21040-7, MR 2060067.
- Cohen, Ralph L. (1985), "The immersion conjecture for differentiable manifolds", Annals of Mathematics, Second Series, 122 (2): 237–328, doi:10.2307/1971304, JSTOR 1971304, MR 0808220.
- Crampin, Michael; Pirani, Felix Arnold Edward (1994), Applicable differential geometry, Cambridge, England: Cambridge University Press, ISBN 978-0-521-23190-9
- Darling, Richard William Ramsay (1994), Differential forms and connections, Cambridge, UK: Cambridge University Press, Bibcode:1994dfc..book.....D, ISBN 978-0-521-46800-8.
- do Carmo, Manfredo Perdigao (1994), Riemannian Geometry, ISBN 978-0-8176-3490-2
- Frankel, Theodore (1997), The Geometry of Physics, Cambridge: Cambridge University Press, ISBN 0-521-38753-1
- Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004), Riemannian Geometry (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-20493-0
- Gromov, M. (1986), Partial differential relations, Springer, ISBN 3-540-12177-3
- Hirsch, Morris W. (1959), "Immersions of manifolds", Transactions of the American Mathematical Society, 93 (2): 242–276, doi:10.2307/1993453, JSTOR 1993453, MR 0119214.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1963), Foundations of Differential Geometry, Volume 1, New York: Wiley-Interscience
- Koschorke, Ulrich (1979), "Multiple points of immersions, and the Kahn-Priddy theorem", Mathematische Zeitschrift, 169 (3): 223–236, doi:10.1007/BF01214837, MR 0554526, S2CID 121273182.
- Kosinski, Antoni Albert (2007) [1993], Differential manifolds, Mineola, New York: Dover Publications, ISBN 978-0-486-46244-8
- Lang, Serge (1999), Fundamentals of Differential Geometry, Graduate Texts in Mathematics, New York: Springer, ISBN 978-0-387-98593-0
- Massey, W. S. (1960), "On the Stiefel-Whitney classes of a manifold", American Journal of Mathematics, 82 (1): 92–102, doi:10.2307/2372878, JSTOR 2372878, MR 0111053.
- Smale, Stephen (1958), "A classification of immersions of the two-sphere", Transactions of the American Mathematical Society, 90 (2): 281–290, doi:10.2307/1993205, JSTOR 1993205, MR 0104227.
- Smale, Stephen (1959), "The classification of immersions of spheres in Euclidean spaces", Annals of Mathematics, Second Series, 69 (2): 327–344, doi:10.2307/1970186, JSTOR 1970186, MR 0105117.
- Spivak, Michael (1999) [1970], A Comprehensive introduction to differential geometry (Volume 1), Publish or Perish, ISBN 0-914098-70-5
- Spring, David (2005), "The golden age of immersion theory in topology: 1959–1973: A mathematical survey from a historical perspective", Bulletin of the American Mathematical Society, New Series, 42 (2): 163–180, CiteSeerX 10.1.1.363.913, doi:10.1090/S0273-0979-05-01048-7, MR 2133309, S2CID 9237068.
- Szekeres, Peter (2004), A course in modern mathematical physics: groups, Hilbert space and differential geometry, Cambridge, United Kingdom: Cambridge University Press, ISBN 978-0-521-82960-1
- Wall, C. T. C. (1999), Surgery on compact manifolds (PDF), Mathematical Surveys and Monographs, vol. 69 (Second ed.), Providence, RI: American Mathematical Society, doi:10.1090/surv/069, ISBN 0-8218-0942-3, MR 1687388.
बाहरी संबंध
- Immersion at the Manifold Atlas
- Immersion of a manifold at the Encyclopedia of Mathematics