लगभग निश्चित
संभाव्यता सिद्धांत में, एक घटना को लगभग निश्चित रूप से घटित होना कहा जाता है (कभी-कभी संक्षिप्त रूप में ए.एस. के रूप में) यदि यह प्रायिकता 1 (या लेबेस्गु उपाय 1) के साथ होती है।[1] दूसरे शब्दों में, संभावित अपवादों का सेट खाली नहीं हो सकता है, लेकिन इसकी प्रायिकता 0 होती है। अवधारणा माप सिद्धांत में लगभग हर जगह की अवधारणा के अनुरूप होते है।
प्रत्येक परिणाम के लिए गैर-शून्य संभाव्यता के साथ परिमित नमूना स्थान पर संभाव्यता प्रयोगों में, निश्चित रूप से कोई अंतर नहीं होता है (चूंकि 1 की संभावना होने पर सभी नमूना बिंदुओं को सम्मलित किया जाता है)। चूँकि, यह अंतर महत्वपूर्ण हो जाता है जब नमूना स्थान एक अनंत सेट होता है,[2] क्योंकि एक अनंत सेट में संभाव्यता 0 के गैर-रिक्त उपसमुच्चय हो सकते है।
इस अवधारणा के उपयोग के कुछ उदाहरणों में बड़ी संख्या के कानून के मजबूत और समान संस्करण और ब्राउनियन गति के पथों की निरंतरता सम्मलित होती है।
शब्द लगभग निश्चित रूप से (ए.सी.) और लगभग हमेशा (ए.ए.) उपयोग किए जाते है। लगभग कभी भी निश्चित रूप से - विपरीत का वर्णन नहीं करता है: प्रायिकता शून्य के साथ होने वाली घटना लगभग कभी नहीं होती है।[3]
औपचारिक परिभाषा
मान लेते है एक संभाव्यता स्थान बनें है। एक घटना लगभग निश्चित रूप से होती है अगर . समान रूप से, होने की संभावना लगभग निश्चित रूप से होती है नहीं होती है 0 (संख्या) है: . अधिक सामान्यतः, कोई भी घटना (जरूरी नहीं कि ) लगभग निश्चित रूप से होता है अगर एक अशक्त सेट में समाहित है: एक सबसेट में ऐसा है कि .[4] लगभग निश्चितता की धारणा संभाव्यता माप पर निर्भर करती है . यदि इस निर्भरता पर जोर देना आवश्यक है, तो यह कहने की प्रथा है कि घटना पी-लगभग निश्चित रूप से, या लगभग निश्चित रूप से होता है.
व्याख्यात्मक उदाहरण
सामान्य तौर पर, एक घटना लगभग निश्चित रूप से हो सकती है, भले ही प्रश्न में संभाव्यता स्थान में वे परिणाम सम्मलित हों जो घटना से संबंधित नहीं है - जैसा कि निम्नलिखित उदाहरण बताते है।
डार्ट फेंकना
एक इकाई वर्ग (1 के क्षेत्र के साथ एक वर्ग) पर एक डार्ट फेंकने की कल्पना करें ताकि डार्ट हमेशा वर्ग में एक त्रुटिहीन बिंदु पर हिट करे, इस तरह से हिट करे कि वर्ग में प्रत्येक बिंदु समान रूप से हिट होने की संभावना हो सके। चूंकि वर्ग का क्षेत्रफल 1 है, इसलिए संभावना है कि डार्ट वर्ग के किसी विशेष उपक्षेत्र से टकराएगा, वह उपक्षेत्र उस क्षेत्रफल के बराबर होगा। उदाहरण के लिए, डार्ट के वर्ग के दाहिने आधे हिस्से पर प्रहार करने की संभावना 0.5 है, क्योंकि दाहिने आधे हिस्से का क्षेत्रफल 0.5 है।
इसके बाद, इस घटना पर विचार करें कि डार्ट इकाई वर्ग के विकर्णों में बिल्कुल एक बिंदु से टकराता है। चूंकि वर्ग के विकर्णों का क्षेत्रफल 0 है, डार्ट के बिल्कुल विकर्ण पर उतरने की प्रायिकता 0 है। अर्थात, डार्ट लगभग कभी भी विकर्ण पर नहीं गिरेगा (समान रूप से, यह लगभग निश्चित रूप से विकर्ण पर नहीं गिरेगा) ), भले ही विकर्णों पर बिंदुओं का सेट खाली नहीं है, और विकर्ण पर एक बिंदु किसी भी अन्य बिंदु से कम संभव नहीं है।
एक सिक्के को बार-बार उछालना
उस स्थिति पर विचार करें जहां प्रायिकता स्थान के अनुरूप एक (संभवतः पक्षपाती) सिक्का उछाला जाता है , जहां घटना तब होती है जब एक सिर फ़्लिप किया जाता है, और अगर एक पूंछ उछली जाती है। इस विशेष सिक्के के लिए, यह माना जाता है कि सिर के उछलने की संभावना है , जिससे यह पता चलता है कि घटना में, एक पूंछ को उछालने की संभावना होती है .
अब, मान लीजिए कि एक प्रयोग किया जाता है जहाँ सिक्के को बार-बार उछाला जाता है, जिसके परिणाम सामने आते है और यह धारणा कि प्रत्येक उछाल का परिणाम अन्य सभी से स्वतंत्र है (यानी, वे स्वतंत्र है और समान रूप से यादृच्छिक चर वितरित किए गए है)। सिक्का टॉस स्पेस पर यादृच्छिक चर के अनुक्रम को परिभाषित करता है, कहाँ . यानी प्रत्येक के परिणाम रिकॉर्ड करता है।
इस स्थिति में, चित और पट का कोई भी अनंत अनुक्रम प्रयोग का एक संभावित परिणाम होता है। चूंकि, चित और पट के किसी विशेष अनंत अनुक्रम में (अनंत) प्रयोग के त्रुटिहीन परिणाम होने की प्रायिकता 0 है। ऐसा इसलिए है क्योंकि आई.आई.डी. धारणा का तात्पर्य है कि सभी सिर पलटने की संभावना फ़्लिप बस है . दे उत्पन्न 0, चूंकि धारणा है। परिणाम वही होता है चाहे हम सिक्के को सिर की ओर कितना भी झुका दें, जब तक हम विवश करते है 0 और 1 के बीच सख्ती से होता है। वास्तव में, वही परिणाम गैर-मानक विश्लेषण में भी लागू होता है - जहां अतिसूक्ष्म संभावनाओं की अनुमति नहीं होती है।[5]
इसके अलावा, टॉस के अनुक्रम में कम से कम एक घटना होती है भी लगभग निश्चित रूप से होती है (अर्थात् प्रायिकता 1 के साथ)। लेकिन अगर फ़्लिप की अनंत संख्या के अतिरिक्त, उछाल कुछ सीमित समय के बाद बंद हो जाती है, मान लीजिए 1,000,000 फ़्लिप है, तो ऑल-हेड अनुक्रम प्राप्त करने की संभावना, , अब 0 नहीं होगा, जबकि कम से कम एक टेल आने की प्रायिकता, , अब 1 नहीं होगा (यानी, घटना अब लगभग निश्चित नहीं है)।
असम्बद्ध रूप से लगभग निश्चित रूप से
एसिम्प्टोटिक विश्लेषण में, एक संपत्ति को एसिम्प्टोटिक रूप से लगभग निश्चित रूप से (ए.ए.एस.) धारण करने के लिए कहा जाता है यदि सेट के अनुक्रम पर, संभाव्यता 1 में परिवर्तित हो जाती है। उदाहरण के लिए, संख्या सिद्धांत में, एक बड़ी संख्या अभाज्य संख्या द्वारा लगभग निश्चित रूप से समग्र संख्या होती है। प्रमेय, और यादृच्छिक ग्राफ में, कथन कनेक्टिविटी है (ग्राफ सिद्धांत) (जहां एर्डोस-रेनी मॉडल रेखांकन को दर्शाता है बढ़त संभावना के साथ शिखर ) सच है कब, कुछ के लिए
संख्या सिद्धांत में, इसे लगभग सभी के रूप में संदर्भित किया जाता है, क्योंकि लगभग सभी संख्याएँ मिश्रित होती है। इसी तरह, ग्राफ सिद्धांत में, इसे कभी-कभी लगभग निश्चित रूप से संदर्भित किया जाता है।[7]
यह भी देखें
- लगभग
- लगभग हर जगह, माप सिद्धांत में संगत अवधारणा
- यादृच्छिक चरों का अभिसरण, लगभग सुनिश्चित अभिसरण के लिए
- क्रॉमवेल का नियम, जो कहता है कि संभावनाओं को लगभग कभी भी शून्य या एक के रूप में सेट नहीं किया जाना चाहिए
- पतित वितरण, लगभग निश्चित रूप से स्थिर
- अनंत बंदर प्रमेय, एक प्रमेय उपरोक्त शर्तों का उपयोग कर रहा है
- गणितीय शब्दजाल की सूची
टिप्पणियाँ
- ↑ Weisstein, Eric W. "लगभग निश्चित रूप से". mathworld.wolfram.com (in English). Retrieved 2019-11-16.
- ↑ "लगभग निश्चित रूप से - मैथ सेंट्रल". mathcentral.uregina.ca. Retrieved 2019-11-16.
- ↑ Grädel, Erich; Kolaitis, Phokion G.; Libkin, Leonid; Marx, Maarten; Spencer, Joel; Vardi, Moshe Y.; Venema, Yde; Weinstein, Scott (2007). परिमित मॉडल सिद्धांत और इसके अनुप्रयोग. Springer. p. 232. ISBN 978-3-540-00428-8.
- ↑ Jacod, Jean; Protter (2004). संभाव्यता आवश्यक. Springer. p. 37. ISBN 978-3-540-438717.
- ↑ Williamson, Timothy (2007-07-01). "How probable is an infinite sequence of heads?". Analysis (in English). 67 (3): 173–180. doi:10.1093/analys/67.3.173. ISSN 0003-2638.
- ↑ Friedgut, Ehud; Rödl, Vojtech; Rucinski, Andrzej; Tetali, Prasad (January 2006). "हर एज कलरिंग में मोनोक्रोमैटिक ट्रायंगल के साथ रैंडम ग्राफ़ के लिए एक शार्प थ्रेशोल्ड". Memoirs of the American Mathematical Society. AMS Bookstore. 179 (845): 3–4. doi:10.1090/memo/0845. ISSN 0065-9266. S2CID 9143933.
- ↑ Spencer, Joel H. (2001). "0. Two Starting Examples". यादृच्छिक रेखांकन का अजीब तर्क. Algorithms and Combinatorics. Vol. 22. Springer. p. 4. ISBN 978-3540416548.
संदर्भ
- Rogers, L. C. G.; Williams, David (2000). Diffusions, Markov Processes, and Martingales. Vol. 1: Foundations. Cambridge University Press. ISBN 978-0521775946.
- Williams, David (1991). Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge University Press. ISBN 978-0521406055.