सूर्य-स्थिरदर्शी

From Vigyanwiki
विनीज़ उपकरण निर्माता जोहान माइकल लिंग द्वारा हेलीओस्टेट (सी. 1850)
फ्रांस में थेमिस प्रायोगिक स्टेशन। दर्पण दिगंशमापी उभार पर घूमता है।
डैगेट, कैलिफोर्निया के पास सोलर-तापीयपावर प्रोजेक्ट। हेलियोस्टैट्स के क्षेत्र में प्रत्येक दर्पण टॉवर पर रिसीवर पर लगातार सूर्य के प्रकाश को दर्शाता है।
स्पेन में सेविले के पास 11MW PS10। जब यह चित्र लिया गया, तो हवा में धूल के कारण अभिसारी प्रकाश दिखाई दे रहा था।
फ्रांस में पायरेनिस-ऑरिएंटेल्स में फॉन्ट-रोमू-ओडिलो-वाया में ओडिलो सौर भट्टी तापमान तक पहुंच सकती है 3,500 °C (6,330 °F)

हेलीओस्टैट, "हेलिओस" से, "सूर्य" के लिए ग्रीक शब्द और "स्टेट", स्थिर रूप में उपकरण है जिसमें दर्पण सम्मलित होता है। सामान्यतः समतल दर्पण जो रखने के लिए मुड़ता है सूर्य के प्रकाश को पूर्व निर्धारित लक्ष्य की ओर परावर्तित करना और आकाश में सूर्य की स्पष्ट गतियों की भरपाई करना। लक्ष्य भौतिक वस्तु हो सकता है, हेलीओस्टैट से दूर अंतरिक्ष में दिशा ऐसा करने के लिए दर्पण की परावर्तक सतह को सूर्य की दिशाओं और दर्पण से देखे गए लक्ष्य के बीच के कोण के समद्विभाजन के लंबवत रखा जाता है। लगभग हर स्थितियों में लक्ष्य हेलिओस स्टेट के सापेक्ष स्थिर होता है, इसलिए प्रकाश निश्चित दिशा में परिलक्षित होता है। समकालीन स्रोतों के अनुसार हेलिओस्टाटा जैसा कि इसे पहले कहा जाता था, इसका आविष्कार विलेम के ग्रेवसंडे (1688-1742) द्वारा किया गया था।[1] अन्य अधियाचक जियोवन्नी अल्फोंसो बोरेली (1608-1679) और डेनियल गेब्रियल फारेनहाइट (1686-1736) हैं।[2] जॉर्ज जॉनस्टोन स्टोनी द्वारा रचना किया गया था। हेलीओस्टेट विज्ञान संग्रहालय लंदन संग्रह में है।[3]

आजकल अधिकांश हेलिओस्टैट्स का उपयोग दिन के उजाले और केंद्रित सौर ऊर्जा के उत्पादन के लिए किया जाता है। सामान्यतः बिजली उत्पन्न करने के लिए इन्हें कभी-कभी सौर खाना पकाने में भी उपयोग किया जाता है। सौर दूरबीन में सूर्य के प्रकाश की गतिहीन किरणों को प्रतिबिंबित करने के लिए कुछ का प्रयोग प्रयोगात्मक रूप से किया जाता है। लेज़र और अन्य बिजली की रोशनी की उपलब्धता से पहले वैज्ञानिक और अन्य उद्देश्यों के लिए प्रकाश के तीव्र, स्थिर बीम का उत्पादन करने के लिए हेलीओस्टैट्स का व्यापक रूप से उपयोग किया जाता था।

अधिकांश आधुनिक हेलीओस्टैट कंप्यूटर द्वारा नियंत्रित होते हैं। कंप्यूटर को पृथ्वी पर हेलीओस्टैट की स्थिति और समय और तारीख का अक्षांश और देशांतर दिया जाता है। इनसे खगोलीय सिद्धांत का उपयोग करते हुए, यह दर्पण से देखे जाने वाले सूर्य की दिशा की गणना करता है। उदाहरण, इसका दिशा सूचक यंत्र असर और ऊंचाई का कोण। फिर लक्ष्य की दिशा दी गई, कंप्यूटर आवश्यक कोण-द्विभाजक की दिशा की गणना करता है और विद्युत मोटर अधिकांशतः स्टेपर मोटर को नियंत्रण संकेत भेजता है, इसलिए वे दर्पण को सही संरेखण में बदल देते हैं। दर्पण को ठीक से उन्मुख रखने के लिए संचालन के इस क्रम को बार-बार दोहराया जाता है।

सौर-तापीय बिजली स्टेशनों जैसे बड़े प्रतिष्ठानों में हेलीओस्टैट्स के क्षेत्र सम्मलित हैं जिनमें कई दर्पण सम्मलित हैं। सामान्यतः, ऐसे क्षेत्र के सभी दर्पणों को ही कंप्यूटर द्वारा नियंत्रित किया जाता है।

पुराने प्रकार के हेलीओस्टैट हैं जो कंप्यूटर का उपयोग नहीं करते हैं, जिनमें आंशिक रूप से या पूरी प्रकार से हाथ से घड़ी की कल से संचालित होते हैं और प्रकाश-सेंसर द्वारा नियंत्रित होते हैं। ये अब अधिक दुर्लभ हैं।

हेलीओस्टैट्स को सौर ट्रैकर से अलग किया जाना चाहिए जो सीधे आकाश में सूर्य पर इंगित करते हैं। चूंकि, कुछ पुराने प्रकार के हेलीओस्टैट में सूर्य-दर्पण-लक्ष्य कोण को विभाजित करने के लिए अतिरिक्त घटकों के साथ सौर ट्रैकर्स सम्मलित होते हैं।

सिडेरोस्टेट समान उपकरण है जिसे सूर्य के अतिरिक्त धुँधले तारे का अनुसरण करने के लिए रचना किया गया है।

बड़े पैमाने पर परियोजनाएं

सौर-तापीय ऊर्जा संयंत्र में सौर परियोजना स्पेन में PS10 संयंत्र की प्रकार हेलियोस्टैट्स का विस्तृत क्षेत्र पानी और पिघले हुए नमक जैसे माध्यम को गर्म करने के लिए संग्रहकर्त्ता पर सूर्य की शक्ति को केंद्रित करता है। माध्यम उष्मा का आदान प्रदान करने वाला के माध्यम से पानी गर्म करने, भाप का उत्पादन करने और फिर भाप टरबाइन के माध्यम से बिजली उत्पन्न करने के लिए यात्रा करता है।

क्षेत्र में हेलिओस्टैट्स की कुछ भिन्न व्यवस्था का उपयोग प्रायोगिक सौर भट्टियों में किया जाता है, जैसे कि फ्रांस में फ़ॉन्ट-रोमू-ओडिलो-के माध्यम से। सभी हेलीओस्टेट दर्पण बड़े परवलयिक परावर्तक में प्रकाश के त्रुटिहीन समानांतर बीम भेजते हैं, जो उन्हें त्रुटिहीन फोकस में लाता है। दर्पणों को ठोस अनुवृत्त के अक्ष के अधिक समीपस्थित होना चाहिए जिससे कि सूर्य के प्रकाश को धुरी के समानांतर रेखाओं में परावर्तित किया जा सके, इसलिए हेलियोस्टैट्स का क्षेत्र संकीर्ण होना चाहिए। नियंत्रण सिद्धांत संवृत पाश हस्तांतरण समारोह नियंत्रण प्रणाली का उपयोग किया जाता है। सेंसर निर्धारित करते हैं कि क्या कोई हेलीओस्टैट्स थोड़ा गलत है। यदि ऐसा है, तो वे इसे ठीक करने के लिए संकेत भेजते हैं।

यह प्रस्तावित किया गया है कि उत्पन्न उच्च तापमान का उपयोग पानी को विभाजित करने के लिए किया जा सकता है जो हाइड्रोजन का उत्पादन करता है।[4]


छोटे पैमाने की परियोजनाएँ

दिन के उजाले और उष्मा के लिए छोटे हेलीओस्टैट्स का उपयोग किया जाता है। सौर ऊर्जा पर ध्यान केंद्रित करने के लिए ही लक्ष्य पर ध्यान केंद्रित करने वाले कई बड़े हेलीओस्टैट्स के अतिरिक्त जैसे सौर ऊर्जा टावर संयंत्र में ल हेलीओस्टैट सामान्यतः लगभग 1 , 2 वर्ग मीटर आकार में खिड़की और आकाश प्रकाशके माध्यम से गैर -केंद्रित सूर्य के प्रकाश को दर्शाता है। छोटा हेलीओस्टैट जमीन पर छत जैसी इमारत की संरचना पर स्थापित है, जो सूर्य के निरंतर आंदोलन की क्षतिपूर्ति के लिए दो अक्षों (ऊपर/नीचे और बाएं/दाएं) पर चलता है। इस प्रकार, परावर्तित सूर्य का प्रकाश लक्ष्य जैसे खिड़की पर स्थिर रहता है।

जीनजाइम केंद्र, कैंब्रिज, मैसाचुसेट्स में जेनजाइम कार्पोरेशन का कॉर्पोरेट मुख्यालय अपने 12-मंजिला आलिंद में सूर्य के प्रकाश को निर्देशित करने के लिए छत पर हेलीओस्टैट्स का उपयोग करता है।[5][6]2009 के लेख में ब्रूस रोहर ने सुझाव दिया कि छोटे हेलिओस्टैट्स को सौर ऊर्जा टॉवर प्रणाली की प्रकार उपयोग किया जा सकता है।[7] उन्होंने कहा कि सैकड़ों जमीन पर कब्जा करने के अतिरिक्त, प्रणाली बहुत छोटे क्षेत्र में फिट होगा, जैसे कि व्यावसायिक इमारत की सपाट छत। प्रस्तावित प्रणाली सूरज की रोशनी में बिजली का उपयोग किसी इमारत को गर्म करने और ठंडा करने, खाद्य प्रसंस्करण जैसी तापीयऔद्योगिक प्रक्रियाओं के लिए इनपुट प्रदान करने के लिए करेगी। शीतलन अवशोषण चिलर के साथ किया जाएगा। रोहर ने प्रस्तावित किया कि प्रणाली बड़े सौर ऊर्जा टावर संयंत्रों की तुलना में "अधिक विश्वसनीय और अधिक लागत प्रभावी प्रति वर्ग मीटर परावर्तक क्षेत्र" होगी। क्योंकि यह इसे परिवर्तित करने की प्रक्रिया में त्र की गई शक्ति का 80 प्रतिशत त्याग नहीं करेगा।[7]

डिजाइन

स्थान देश में ऊर्जा नीति और आर्थिक ढांचे के आधार पर सौर ऊर्जा टावर बिजली संयंत्रों के लिए प्रारंभिक पूंजी निवेश का 30-50% हेलियोस्टैट लागत का प्रतिनिधित्व करता है।[8][9] बड़े पैमाने पर विनिर्माण के लिए कम खर्चीले हेलीओस्टैट्स को डिजाइन करना रुचिकर है, जिससे कि सौर ऊर्जा टावर बिजली संयंत्र पारंपरिक कोयले, परमाणु ऊर्जा संयंत्रों की लागतों की तुलना में अधिक प्रतिस्पर्धी लागत पर बिजली का उत्पादन कर सकें।

लागत के अतिरिक्त, प्रतिशत सौर परावर्तकता अर्थात अल्बेडो और पर्यावरणीय स्थायित्व ऐसे कारक हैं जिन पर हेलियोस्टैट डिजाइनों की तुलना करते समय विचार किया जाना चाहिए।

A Heliostat and External receiver.jpg

विधि है कि अभियंताों और शोधकर्ता हेलीओस्टैट्स की लागत को कम करने का प्रयास कर रहे हैं पारंपरिक हेलीओस्टैट रचना को कम, हल्की सामग्री का उपयोग करने वाले के साथ बदलकर। हेलीओस्टैट के प्रतिबिंबित घटकों के लिए पारंपरिक डिजाइन दूसरी सतह दर्पण का उपयोग करता है। सैंडविच जैसी दर्पण संरचना में सामान्यतः स्टील संरचनात्मक समर्थन, चिपकने वाली परत, सुरक्षात्मक तांबे की परत, परावर्तक चांदी की परत और मोटे कांच की शीर्ष सुरक्षात्मक परत होती है।[8]इस पारंपरिक हेलीओस्टैट को अधिकांशतः काँच/धातु हेलीओस्टैट के रूप में जाना जाता है। सामग्री की लागत और वजन में कमी लाने के लिए वैकल्पिक डिजाइन में हाल ही में चिपकने वाला, समग्र और पतली फिल्म अनुसंधान सम्मलित है। वैकल्पिक परावर्तक रचना के कुछ उदाहरण चांदी के बहुलक परावर्तक, काँच फाइबर प्रबलित पॉलिएस्टर सैंडविच (जीएफआरपीएस) और एल्यूमिनिज्ड परावर्तक हैं।[10] इन आधुनिक रचनाओ के साथ समस्याओं में सुरक्षात्मक कोटिंग्स का प्रदूषण, सूर्य के संपर्क में लंबे समय तक प्रतिशत सौर परावर्तकता में कमी और उच्च निर्माण लागत सम्मलित हैं।

ट्रैकिंग विकल्प

अधिकांश आधुनिक हेलीओस्टैट्स का संचलन दो-अक्ष मोटर चालित प्रणाली को नियोजित करता है, जिसे कंप्यूटर द्वारा नियंत्रित किया जाता है, जैसा कि इस लेख के प्रारंभ में बताया गया है। लगभग सदैव, प्राथमिक आवर्तन अक्ष लंबवत और द्वितीयक क्षैतिज होता है, इसलिए दर्पण दिगंशमापी उभार पर होता है।

आसान विकल्प यह है कि दर्पण ध्रुवीय संरेखण प्राथमिक अक्ष के चारों ओर घूमता है, जो यांत्रिक अधिकांशतः घड़ी की कल, प्रति घंटे 15 डिग्री पर तंत्र द्वारा संचालित होता है, जो सूर्य के सापेक्ष पृथ्वी के घूर्णन की भरपाई करता है। दर्पण को आकाशीय ध्रुव में से की दिशा में समान ध्रुवीय अक्ष के साथ सूर्य के प्रकाश को प्रतिबिंबित करने के लिए संरेखित किया गया है। मौसम के साथ सूर्य की गिरावट में बदलाव की भरपाई के लिए दर्पण के कभी-कभी नियमावली समायोजन दैनिक कम बार आवश्यक की अनुमति देने वाला सीधा माध्यमिक अक्ष है। समय के समीकरण में परिवर्तन की भरपाई के लिए ड्राइव क्लॉक की सेटिंग को कभी-कभी समायोजित भी किया जा सकता है। लक्ष्य को उसी ध्रुवीय अक्ष पर स्थित किया जा सकता है, जो दर्पण का प्राथमिक आवर्तन अक्ष है, एक या दूसरे स्थिर दर्पण का उपयोग ध्रुवीय अक्ष से लक्ष्य की ओर प्रकाश को प्रतिबिंबित करने के लिए किया जा सकता है, चाहे वह कहीं भी हो। इस प्रकार के दर्पण माउंट और ड्राइव का उपयोग अधिकांशतः सौर कुकर जैसे सौर ऊर्जा खाना पकाने के साथ किया जाता है।[11][12][13] इस आवेदन के लिए दर्पण घुमावदार दर्पण अवतल दर्पण हो सकता है, जिससे कि खाना पकाने के बर्तन पर सूर्य के प्रकाश को केंद्रित किया जा सके।

दिगंशमापी और ध्रुवीय-अक्ष संरेखण दो-अक्ष माउंट के लिए तीन अभिविन्यास में से दो हैं, जो सामान्यतः हेलीओस्टैट दर्पणों के लिए उपयोग किए जाते हैं। तीसरी लक्ष्य-अक्ष व्यवस्था है जिसमें प्राथमिक अक्ष उस लक्ष्य की ओर इंगित करता है जिस पर सूर्य के प्रकाश को परावर्तित किया जाना है। द्वितीयक अक्ष प्राथमिक के लंबवत है। प्रकाश-संवेदकों द्वारा नियंत्रित हेलिओस्टैट्स ने इस अभिविन्यास का उपयोग किया है। छोटे हाथ में सेंसर होते हैं जो मोटर्स को नियंत्रित करते हैं जो हाथ को दो अक्षों के चारों ओर घुमाते हैं, इसलिए यह सौर ट्रैकर को सम्मलित करते हुए सूर्य की ओर इशारा करता है। साधारण यांत्रिक व्यवस्था लक्ष्य की ओर इशारा करते हुए प्राथमिक अक्ष और सूर्य की ओर इशारा करते हुए भुजा के बीच के कोण को द्विभाजित करती है। दर्पण लगा हुआ है इसलिए इसकी परावर्तक सतह इस द्विभाजक के लंबवत है। सस्ते कंप्यूटर की उपलब्धता से पहले इस प्रकार के हेलीओस्टेट का उपयोग दिन के उजाले के लिए किया जाता था, किन्तु सेंसर नियंत्रण हार्डवेयर की प्रारंभिक उपलब्धता के बाद।

हेलीओस्टैट रचना हैं जिन्हें किसी भी त्रुटिहीन अभिविन्यास के लिए आवर्तन अक्षों की आवश्यकता नहीं होती है। उदाहरण के लिए लक्ष्य के समीप प्रकाश-संवेदक हो सकते हैं, जो मोटरों को संकेत भेजते हैं जिससे कि जब भी परावर्तित प्रकाश की किरण लक्ष्य से दूर चली जाए तो वे दर्पण के संरेखण को सही कर दें। कुल्हाड़ियों की दिशाओं को केवल लगभग ज्ञात होना चाहिए, क्योंकि प्रणाली आंतरिक रूप से स्वयं-सुधार कर रही है। चूंकि, इसके हानि भी हैं, जैसे कि दर्पण को हर सुबह नियमावली रूप से फिर से लगाना पड़ता है और लंबे समय तक बादल छाए रहने के बाद, परावर्तित किरण के बाद से जब यह फिर से दिखाई देता है। सेंसर को याद करता है, इसलिए प्रणाली दर्पण के उन्मुखीकरण को सही नहीं कर सकता है। ज्यामितीय समस्याएं भी हैं जो हेलीओस्टेट के कार्य पद्धति को सीमित करती हैं जब सूर्य और लक्ष्य की दिशाएं जैसा कि दर्पण से देखा जाता है, कमियों के कारण जो बहुत अलग हैं। इस रचना का सामान्यतः कभी उपयोग नहीं किया गया है, किन्तु कुछ लोग इसके साथ प्रयोग करते हैं।

सामान्यतः, हेलीओस्टेट दर्पण ऐसी दर से चलता है जो सूर्य की कोणीय गति का 1/2 है। और व्यवस्था है जो हेलीओस्टैट की परिभाषा को संतुष्ट करती है फिर भी दर्पण गति है जो सूर्य की गति का 2/3 है।[14] कई अन्य प्रकार के हेलीओस्टैट का भी कभी-कभी उपयोग किया जाता है। उदाहरण के लिए, प्राचीन मिस्र में दिन के उजाले के लिए उपयोग किए जाने वाले सबसे प्रारंभिक हेलिओस्टैट्स में, नौकरों या दासों ने किसी भी प्रकार के तंत्र का उपयोग किए बिना दर्पणों को नियमावली रूप से संरेखित किया। (मिस्र में ऐसे स्थान हैं जहां आज यह पर्यटकों के लाभ के लिए किया जाता है। फिल्म पांचवां तत्व में मिस्र का लड़का काल्पनिक पुरातत्वविद् के लिए गुफा के अंदर दीवार को रोशन करने के लिए दर्पण रखता है।) विस्तृत घड़ी की कल हेलीओस्टैट्स के दौरान बनाया गया था 19वीं शताब्दी जो केवल दर्पण का उपयोग करके किसी भी दिशा में सूर्य के प्रकाश को प्रतिबिंबित कर सकती थी, प्रकाश हानि को कम कर सकती थी, और जो सूर्य के मौसमी आंदोलनों के लिए स्वचालित रूप से क्षतिपूर्ति करती थी। इनमें से कुछ उपकरण अभी भी संग्रहालयों में देखे जा सकते हैं, किन्तु आज व्यावहारिक उद्देश्यों के लिए इनका उपयोग नहीं किया जाता है। एमेच्योर कभी-कभी तदर्थ डिजाइन के साथ आते हैं जो बिना किसी सैद्धांतिक औचित्य के लगभग किसी विशेष स्थान पर काम करते हैं। ऐसे डिजाइनों की अनिवार्य रूप से असीमित संख्या संभव है।

यह भी देखें

संदर्भ

  1. A New and Complete Dictionary of Arts and Sciences, vol 2, London, 1763, p. 1600
  2. Pieter van der Star, Daniel Gabriel Fahrenheit's Letters to Leibniz and Boerhaave, Leiden, 1983, p. 7.
  3. "Heliostat, contrived by the late G. Johnstone Stoney, D.Sc., F.R.S., c. 1875". Science Museum Group. Retrieved 20 June 2022.
  4. Graf, D.; Monnerie, N.; Roeb, M.; Schmitz, M.; Sattler, C. (2008). "थर्मोकेमिकल चक्रों और इलेक्ट्रोलिसिस के माध्यम से सौर हाइड्रोजन उत्पादन की आर्थिक तुलना". International Journal of Hydrogen Energy. 33 (17): 4511–4519. doi:10.1016/j.ijhydene.2008.05.086.
  5. U.S. Green Building Council: LEED Case Studies Archived 2009-12-01 at the Wayback Machine
  6. Interview with Lou Capozzi, Facilities Manager of Genzyme Center Archived January 8, 2010, at the Wayback Machine
  7. 7.0 7.1 Rohr, B. (Spring 2009). "छोटे हेलीओस्टैट्स का वादा" (PDF). Northeast Sun. Archived from the original (PDF) on 2010-12-26. Retrieved 2010-01-25.
  8. 8.0 8.1 Mar, R.; Swearengen, J. (1981). "सौर तापीय ऊर्जा प्रणालियों में सामग्री मुद्दे". Solar Energy Materials. 5: 37–41. Bibcode:1981SoEnM...5...37M. doi:10.1016/0165-1633(81)90057-5.
  9. Ortega, J. I.; Burgaleta, J. I.; Téllez, F. L. M. (2008). "हीट ट्रांसफर फ्लूइड के रूप में पिघला हुआ नमक का उपयोग कर केंद्रीय रिसीवर सिस्टम सौर ऊर्जा संयंत्र". Journal of Solar Energy Engineering. 130 (2): 024501–024506. doi:10.1115/1.2807210.
  10. Kennedy, C. E.; Terwilliger, K. (2005). "उम्मीदवार सौर परावर्तकों की ऑप्टिकल स्थायित्व". Journal of Solar Energy Engineering. 127 (2): 262–268. doi:10.1115/1.1861926.
  11. The Scheffler-Reflector Archived 2008-04-22 at the Wayback Machine, retrieved 5-June-2011
  12. Notes on Scheffler Community Kitchens David Delaney, rev 22-Feb-2009, retrieved 5-June-2011
  13. Illustration at solarcooking.org, downloaded 5-June-2011
  14. "Red Rock Energy Heliostats".


बाहरी संबंध