विस्थापन धारा

From Vigyanwiki
Revision as of 11:12, 24 March 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

विद्युत चुंबकत्व में, विस्थापन धारा घनत्व मैक्सवेल के समीकरणों में दिखाई देने वाली मात्रा D/∂t है जिसे विद्युत विस्थापन क्षेत्र D के परिवर्तन की दर के संदर्भ में परिभाषित किया गया है। विस्थापन धारा घनत्व में विद्युत प्रवाह घनत्व के समान इकाइयाँ होती हैं, और यह चुंबकीय क्षेत्र का एक स्रोत होता है जैसे वास्तविक धारा होती है। चूँकि यह गतिमान विद्युत आवेश का विद्युत प्रवाह नहीं है, बल्कि एक समय-परिवर्तनशील विद्युत क्षेत्र है। भौतिक सामग्रियों में (निर्वात के विपरीत), परमाणुओं में बंधे आवेशो की हल्की गति से भी योगदान होता है, जिसे परावैद्युत ध्रुवीकरण कहा जाता है।

इस विचार की कल्पना जेम्स क्लर्क मैक्सवेल ने अपने 1861 के पेपर ऑन फिजिकल लाइन्स ऑफ फोर्स, भाग III में एक परावैद्युत माध्यम में विद्युत कणों के विस्थापन के संबंध में की थी। मैक्सवेल ने विद्युतधारा की इकाई के परिपथीय नियम विद्युतधारा की इकाई के परिपथीय नियम में विद्युत धारा शब्द में विस्थापन धारा को समाहित किया जाता है। अपने 1865 के पेपर विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत में मैक्सवेल ने विद्युतधारा की इकाई के परिपथल लॉ के इस संशोधित संस्करण का उपयोग विद्युत चुम्बकीय तरंग समीकरण को प्राप्त करने के लिए किया। बिजली, चुंबकत्व और प्रकाशिकी को एक एकीकृत सिद्धांत में एकजुट करने के आधार पर इस व्युत्पत्ति को अब सामान्यतः भौतिकी में एक ऐतिहासिक मील के पत्थर के रूप में स्वीकार किया जाता है। विस्थापन धारा शब्द को अब एक महत्वपूर्ण जोड़ के रूप में देखा जाता है जिसने मैक्सवेल के समीकरणों को पूरा किया और कई घटनाओं, विशेष रूप से विद्युत चुम्बकीय तरंगों के अस्तित्व की व्याख्या करने के लिए आवश्यक है।

स्पष्टीकरण

विद्युत विस्थापन क्षेत्र को इस प्रकार परिभाषित किया गया है:

जहाँ:

समय के संबंध में इस समीकरण को अलग करना विस्थापन धारा घनत्व को परिभाषित करता है इसलिए एक परावैद्युत में दो घटक होते हैं: [1] ("धारा घनत्व" का विस्थापन धारा अनुभाग भी देखें)

दायीं ओर का पहला पद भौतिक मीडिया और मुक्त स्थान में उपस्थित है। यह आवश्यक नहीं है कि आवेश के किसी वास्तविक संचलन से आया हो, लेकिन इसका एक संबद्ध चुंबकीय क्षेत्र होता है, ठीक वैसे ही जैसे आवेश की गति के कारण धारा होती है। कुछ लेखक नाम विस्थापन धारा को पहले पद के लिए ही लागू करते हैं।[2] दाहिनी ओर का दूसरा पद, जिसे ध्रुवीकरण धारा घनत्व कहा जाता है, परावैद्युतिकी पदार्थ के अलग-अलग अणुओं के विद्युत ध्रुवीकरण में परिवर्तन से आता है। ध्रुवीकरण का परिणाम तब होता है, जब एक लागू विद्युत क्षेत्र के प्रभाव में, अणुओं में आवेश सटीक रद्दीकरण की स्थिति से चले जाते हैं। अणुओं में धनात्मक और ऋणात्मक आवेश अलग हो जाते हैं, जिससे ध्रुवीकरण P की स्थिति में वृद्धि होती है। ध्रुवीकरण की एक बदलती स्थिति आवेश की गति से मेल खाती है और इसलिए यह एक धारा के समतुल्य है, इसलिए ध्रुवीकरण धारा शब्द है। इस प्रकार,

यह ध्रुवीकरण विस्थापन धारा है क्योंकि यह मूल रूप से मैक्सवेल द्वारा कल्पना की गई थी। मैक्सवेल ने निर्वात को भौतिक माध्यम मानकर कोई विशेष उपचार नहीं किया। मैक्सवेल के लिए, P का प्रभाव संबंध D = ε0εr E में सापेक्ष पारगम्यता εr को बदलने के लिए था।

विस्थापन धारा के आधुनिक औचित्य को नीचे समझाया गया है।

समदैशिक परावैद्युतिकी स्थितियों

एक बहुत ही सरल परावैद्युतिकी पदार्थ के स्थिति में संवैधानिक संबंध रखता है:

जहां अनुमति है का उत्पाद है:

  • ε0, मुक्त स्थान की पारगम्यता, या विद्युत स्थिरांक; और
  • εr, परावैद्युतिकी की सापेक्ष पारगम्यता।

उपरोक्त समीकरण में, ε का उपयोग परावैद्युतिकी के ध्रुवीकरण (यदि कोई हो) के लिए होता है।

विद्युत प्रवाह के संदर्भ में विस्थापन धारा का अदिष्ट मान भी व्यक्त किया जा सकता है:

अदिष्ट (भौतिकी) ε के रूप में केवल रेखीय समदैशिक सामग्री के लिए सही हैं। रैखिक गैर-आइसोट्रोपिक सामग्री के लिए, ε मैट्रिक्स (गणित) बन जाता है; और सामान्यतः, ε को टेन्सर द्वारा प्रतिस्थापित किया जा सकता है, जो स्वयं विद्युत क्षेत्र पर निर्भर हो सकता है, या आवृत्ति निर्भरता (इसलिए फैलाव) प्रदर्शित कर सकता है।

एक रैखिक आइसोट्रोपिक परावैद्युतिकी के लिए, ध्रुवीकरण P द्वारा दिया गया है:

जहाँ χe को विद्युत क्षेत्रों के लिए परावैद्युत की संवेदनशीलता के रूप में जाना जाता है। ध्यान दें कि

आवश्यकता

विस्थापन धारा के कुछ निहितार्थ अनुसरण करते हैं, जो प्रायोगिक अवलोकन से सहमत हैं, और विद्युत चुंबकत्व के सिद्धांत के लिए तार्किक स्थिरता की आवश्यकताओं के साथ हैं।

विद्युतधारा की इकाई के परिपथीय नियम का सामान्यीकरण

संधारित्र में धारा

प्लेटों के बीच कोई माध्यम नहीं होने वाले संधारित्र के संबंध में विस्थापन धारा की आवश्यकता को दर्शाने वाला उदाहरण उत्पन्न होता है। चित्र में चार्जिंग संधारित्र पर विचार करें। संधारित्र एक परिपथ में होता है जो बायीं प्लेट और दायीं प्लेट पर समान और विपरीत चार्ज का कारण बनता है, संधारित्र को चार्ज करता है और इसकी प्लेटों के बीच विद्युत क्षेत्र को बढ़ाता है। इसकी प्लेटों के बीच निर्वात के माध्यम से कोई वास्तविक आवेश नहीं ले जाया जाता है। बहरहाल, प्लेटों के बीच एक चुंबकीय क्षेत्र उपस्थित है जैसे कि वहां भी एक धारा उपस्थित थी। एक व्याख्या यह है कि एक विस्थापन धारा ID निर्वात में "प्रवाहित" होती है, और यह धारा विद्युतधारा की इकाई के नियम के अनुसार प्लेटों के बीच के क्षेत्र में चुंबकीय क्षेत्र उत्पन्न करती है:[[3][4]

बाएं हाथ की प्लेट के चारों ओर एक काल्पनिक बेलनाकार सतह वाला एक विद्युत आवेश संधारित्र। दाहिने हाथ की सतह R प्लेटों और बाईं ओर की सतह के बीच की जगह में स्थित है L बाईं प्लेट के बाईं ओर स्थित है। कोई चालन धारा सिलेंडर की सतह में प्रवेश नहीं करती है R, जबकि धारा I सतह से निकल जाता है L. विद्युतधारा की इकाई के नियम की संगति के लिए विस्थापन धारा की आवश्यकता होती है ID = I सतह पर बहने के लिए R.

जहाँ

  • कुछ बंद वक्र C के चारों ओर बंद रेखा समाकल है;
  • टेस्ला (यूनिट) में मापा गया चुंबकीय क्षेत्र है;
  • संवाहक डॉट उत्पाद है;
  • वक्र C के साथ एक अतिसूक्ष्म रेखा तत्व है, अर्थात, C के लंबाई तत्व के बराबर परिमाण वाला एक सदिश, और और वक्र C को स्पर्शरेखा द्वारा दी गई दिशा;
  • चुंबकीय स्थिरांक है, जिसे मुक्त स्थान की पारगम्यता भी कहा जाता है; और
  • शुद्ध विस्थापन धारा है जो वक्र C से बंधी एक छोटी सतह से निकलती है।

प्लेटों के बीच चुंबकीय क्षेत्र वही होता है जो प्लेटों के बाहर होता है, इसलिए विस्थापन धारा तारों में चालन धारा के समान होनी चाहिए, अर्थात,

जो धारा की धारणा को मात्र आवेश के परिवहन से आगे बढ़ाता है।

अगला, यह विस्थापन धारा संधारित्र की चार्जिंग से संबंधित है। बाईं प्लेट के चारों ओर दिखाई गई काल्पनिक बेलनाकार सतह में धारा पर विचार करें।एक धारा, मान लीजिए I, बेलन की बाईं सतह L से बाहर की ओर निकलती है, लेकिन कोई चालन धारा (वास्तविक आवेश का कोई परिवहन नहीं होता) दाहिनी सतह R को पार करती है। ध्यान दें कि प्लेटों के बीच विद्युत क्षेत्र E संधारित्र आवेशों के रूप में बढ़ता है। यही है, गॉस का नियम, द्वारा वर्णित तरीके से, प्लेटों के बीच कोई परावैद्युतिकी नहीं मानते हुए:

जहाँ S काल्पनिक बेलनाकार सतह को संदर्भित करता है। आवेश संरक्षण समीकरण, समान विद्युत क्षेत्र के साथ समानांतर प्लेट संधारित्र मानते हुए और प्लेटों के किनारों के आसपास फ्रिंजिंग प्रभावों की उपेक्षा करना

जहाँ पहले पद का ऋणात्मक चिन्ह है क्योंकि आवेश सतह L को छोड़ देता है (आवेश घट रहा है), अंतिम पद का धनात्मक चिन्ह है क्योंकि सतह R का इकाई सदिश बाएँ से दाएँ है जबकि विद्युत क्षेत्र की दिशा दाएँ से बाएँ है, S सतह R का क्षेत्रफल है। सतह L पर विद्युत क्षेत्र शून्य है क्योंकि सतह L संधारित्र के बाहर है। संधारित्र के अंदर एक समान विद्युत क्षेत्र वितरण की धारणा के तहत, विस्थापन धारा घनत्व JD सतह के क्षेत्रफल से विभाजित करके पाया जाता है:

जहाँ I बेलनाकार सतह से निकलने वाली धारा है (जो कि ID के बराबर होनी चाहिए) और JD फलक R के माध्यम से बेलनाकार सतह में प्रति इकाई क्षेत्र में आवेश का प्रवाह है।

इन परिणामों के संयोजन से, चुंबकीय क्षेत्र को विद्युतधारा की इकाई के नियम के अभिन्न रूप का उपयोग करते हुए समोच्च के मनमाने विकल्प के साथ पाया जाता है, बशर्ते कि विस्थापन धारा घनत्व शब्द प्रवाहकत्त्व धारा घनत्व ( विद्युतधारा की इकाई-मैक्सवेल समीकरण) में समाहित किया जाता है: [5]

यह समीकरण कहता है कि किनारे के चारों ओर चुंबकीय क्षेत्र B का अभिन्न अंग है किसी सतह का सतह का S समान किनारे वाली किसी भी सतह के माध्यम से एकीकृत धारा J के बराबर है, प्लस विस्थापन धारा अवधि शब्द किसी भी सतह के माध्यम से।

उदाहरण दो सतहों को दिखा रहा है S1 और S2 जो समान बाउंडिंग समोच्च साझा करते हैं S. चूँकि, S1 चालन धारा द्वारा छेदा जाता है, जबकि S2 विस्थापन धारा द्वारा छेदित किया जाता है। सतह S2 संधारित्र प्लेट के नीचे बंद है।

जैसा कि दाईं ओर की आकृति में दर्शाया गया है, धारा क्रॉसिंग सतह S1 पूरी तरह से चालन धारा है। विद्युतधारा की इकाई-मैक्सवेल समीकरण को सतह पर लागू करने से S1 प्राप्त होता है::

चूँकि, धारा रेखन सतह S2 पूरी तरह से विस्थापन धारा है। इस नियम को सतह S2 पर लागू करना, जो ठीक उसी वक्र से घिरा है, जो ठीक उसी वक्र से घिरा है , लेकिन प्लेटों के बीच स्थित है, उत्पादन करता है:

कोई भी सतह S1 जो तार को काटती है उसमें धारा I होता है जो इससे होकर गुजरता है इसलिए विद्युतधारा की इकाई का नियम सही चुंबकीय क्षेत्र देता है। चूँकि एक दूसरी सतह S2 एक ही किनारे से घिरा हुआ होता है को संधारित्र की प्लेटों के बीच से गुजरते हुए खींचा जा सकता है, इसलिए इससे कोई धारा नहीं गुजर रही है। विस्थापन धारा के बिना विद्युतधारा की इकाई का नियम इस सतह के लिए शून्य चुंबकीय क्षेत्र देगा। इसलिए, विस्थापन धारा शब्द के बिना विद्युतधारा की इकाई का नियम असंगत परिणाम देता है, चुंबकीय क्षेत्र एकीकरण के लिए चुनी गई सतह पर निर्भर करेगा। इस प्रकार विस्थापन धारा अवधि दूसरे स्रोत शब्द के रूप में आवश्यक है जो सही चुंबकीय क्षेत्र देता है जब समाकलन की सतह संधारित्र प्लेटों के बीच से निकलती है। क्योंकि धारा संधारित्र की प्लेटों पर आवेश बढ़ा जाता है, प्लेटों के बीच विद्युत क्षेत्र बढ़ रहा होता है, और विद्युत क्षेत्र के परिवर्तन की दर ऊपर पाए गए क्षेत्र B के लिए सही मान देता है।

गणितीय सूत्रीकरण

अधिक गणितीय नस में, समान परिणाम अंतर्निहित अंतर समीकरणों से प्राप्त किए जा सकते हैं। सरलता के लिए एक गैर-चुंबकीय माध्यम पर विचार करें जहां सापेक्ष चुंबकीय पारगम्यता एकता है, और चुंबकीयकरण वर्तमान (बाउंड धारा) की जटिलता अनुपस्थित है, जिससे की और .

आयतन छोड़ने वाली धारा को आयतन में आवेश के घटने की दर के बराबर होना चाहिए। विभेदक रूप में यह धारा घनत्व निरंतरता समीकरण बन जाता है:

जहां बाईं ओर मुक्त धारा घनत्व का अपसरण है और दाईं ओर मुक्त आवेश घनत्व में कमी की दर है। चूँकि, विद्युतधारा की इकाई का नियम अपने मूल रूप में कहता है:

जिसका तात्पर्य है कि निरंतरता समीकरण के विपरीत, धारा शब्द की विचलन अवधि मिट जाती है। (डाइवर्जेंस का मिट जाना संवाहक कैलकुलस आइडेंटिटीज डाइवर्जेंस ऑफ कर्ल का परिणाम है जो बताता है कि कर्ल का डाइवर्जेंस सदैव शून्य होता है।) इस संघर्ष को विस्थापन धारा के अतिरिक्त हटा दिया जाता है, तब:[6][7]

और

जो गॉस के नियम के कारण निरंतरता समीकरण के अनुरूप है:

तरंग संचरण

समाहित किया गया विस्थापन धारा भी चुंबकीय क्षेत्र के समीकरण के कर्ल को लेकर तरंग संचरण की ओर जाता है।[8]

J के लिए इस फॉर्म को विद्युतधारा की इकाई के नियम में प्रतिस्थापित करने पर, और यह मानते हुए कि J में योगदान देने वाला कोई बाध्य या मुक्त धारा घनत्व नहीं है:


परिणामस्वप्रप:

चूँकि,
तरंग समीकरण के लिए अग्रणी:[9]
जहां सदिश पहचान का उपयोग किया जाता है जो किसी सदिश क्षेत्र V(r, t) के लिए धारण करता है:

और तथ्य यह है कि चुंबकीय क्षेत्र का विचलन शून्य है। कर्ल लेकर विद्युत क्षेत्र के लिए एक समान तरंग समीकरण पाया जा सकता है:

यदि J, P, और ρ शून्य हैं, तो परिणाम है:
विद्युत क्षेत्र को सामान्य रूप में व्यक्त किया जा सकता है:

जहाँ φ विद्युत क्षमता है (जिसे पोइसन के समीकरण को संतुष्ट करने के लिए चुना जा सकता है) और A एक संवाहक क्षमता है (अर्थात चुंबकीय संवाहक क्षमता, सतह क्षेत्र के साथ भ्रमित नहीं होना चाहिए, जैसा कि A अन्यत्र दर्शाया गया है)। दाहिनी ओर का ∇φ घटक गॉस का नियम घटक है, और यह वह घटक है जो उपरोक्त आवेश तर्क के संरक्षण के लिए प्रासंगिक है। दाईं ओर का दूसरा शब्द विद्युत चुम्बकीय तरंग समीकरण के लिए प्रासंगिक है, क्योंकि यह वह पद है जो की E के कर्ल में योगदान देता है। सदिश पहचान के कारण जो कहता है कि ग्रेडिएंट का कर्ल शून्य है, φ में योगदान नहीं करता है ∇×E.

इतिहास और व्याख्या

मैक्सवेल के विस्थापन धारा को उनके 1861 के पेपर 'ऑन फिजिकल लाइन्स ऑफ फोर्स' के भाग III में पोस्ट किया गया था। आधुनिक भौतिकी के कुछ विषयों ने विस्थापन धारा के समान भ्रम और भ्रांति पैदा की है। [10] यह आंशिक रूप से इस तथ्य के कारण है कि मैक्सवेल ने अपनी व्युत्पत्ति में आणविक भंवरों के समुद्र का उपयोग किया, जबकि आधुनिक पाठ्यपुस्तकें इस आधार पर संचालित होती हैं कि मुक्त स्थान में विस्थापन धारा उपस्थित हो सकती है। मैक्सवेल की व्युत्पत्ति निर्वात में विस्थापन धारा के लिए आधुनिक दिन की व्युत्पत्ति से संबंधित नहीं है, जो चुंबकीय क्षेत्र के लिए विद्युतधारा की इकाई के परिपथीय नियम और विद्युत आवेश के लिए निरंतरता समीकरण के बीच संगति पर आधारित है।

मैक्सवेल का उद्देश्य उनके द्वारा (भाग I, पृष्ठ 161) में कहा गया है:

मैं अब एक यांत्रिक दृष्टिकोण से चुंबकीय घटना की जांच करने का प्रस्ताव करता हूं, और यह निर्धारित करने के लिए कि एक माध्यम में कौन से तनाव, या गति, देखी गई यांत्रिक घटनाओं का उत्पादन करने में सक्षम हैं।

वह यह इंगित करने के लिए सावधान है कि उपचार सादृश्य में से एक है:

प्रतिनिधित्व की इस पद्धति के लेखक लोचदार ठोस में न तनावों के कारण प्रभावों द्वारा प्रेक्षित बलों की उत्पत्ति की व्याख्या करने का प्रयास नहीं करते हैं, लेकिन दोनों के अध्ययन में कल्पना की सहायता के लिए दो समस्याओं की गणितीय उपमाओं का उपयोग करते हैं।

भाग III में, वे विस्थापन धारा के संबंध में कहते हैं

मैंने घूमने वाले पदार्थ को कुछ कोशिकाओं के पदार्थ के रूप में माना, जो कोशिकाओं की तुलना में बहुत छोटे कणों से बनी कोशिका-दीवारों से एक दूसरे से विभाजित होते हैं, और यह इन कणों की गतियों और उनकी स्पर्शरेखा क्रिया द्वारा होता है। कोशिकाओं में पदार्थ, कि घूर्णन एक कोशिका से दूसरे कोशिका में संचारित होता है।

स्पष्ट रूप से मैक्सवेल चुंबकीयकरण पर गाड़ी चला रहा था, चूँकि वही परिचय स्पष्ट रूप से परावैद्युतिकी ध्रुवीकरण के बारे में बात करता है।

ध्वनि की गति के लिए न्यूटन के समीकरण (बल की रेखाएँ, भाग III, समीकरण (132)) का उपयोग करते हुए मैक्सवेल ने निष्कर्ष निकाला कि "प्रकाश में उसी माध्यम में अनुप्रस्थ तरंगें होती हैं जो विद्युत और चुंबकीय घटना का कारण होती हैं।"

लेकिन यद्यपि उपरोक्त उद्धरण विस्थापन धारा के लिए एक चुंबकीय व्याख्या की ओर इशारा करते हैं, उदाहरण के लिए, उपरोक्त कर्ल समीकरण के विचलन के आधार पर, मैक्सवेल की व्याख्या ने अंततः पारद्युतिक के रैखिक ध्रुवीकरण पर बल दिया:

यह विस्थापन;... एक धारा का प्रारंभिक है;... विस्थापन की मात्रा शरीर की प्रकृति पर निर्भर करती है, और वैद्युतवाहक बल पर ताकि अगर h विस्थापन हो R वैद्युतवाहक बल, और E परावैद्युत की प्रकृति के आधार पर एक गुणांक:

और यदि r विस्थापन के कारण विद्युत धारा का मान है
ये संबंध पारद्युतिक के तंत्र के बारे में किसी भी सिद्धांत से स्वतंत्र हैं; लेकिन जब हम एक परावैद्युत में विद्युत वाहक बल को विद्युत विस्थापन उत्पन्न करते हुए पाते हैं, और जब हम परावैद्युत को विद्युत विस्थापन की स्थिति से उबरते हुए पाते हैं... जब दबाव हटा दिया जाता है।

— बल की भौतिक रेखाओं पर, भाग III, "आण्विक चक्रवात का सिद्धांत स्थैतिक बिजली पर लागू होता है", पीपी.14–15

अनुभाग में निकाले गए परिणामों के साथ संयुक्त प्रतीकों (और इकाइयों) के कुछ परिवर्तन के साथ § संधारित्र में धारा (rJ, R → −E, और सामग्री स्थिरांक E−2 → 4πεrε0 ये समीकरण समान विद्युत क्षेत्र वाले समानांतर प्लेट संधारित्र के बीच परिचित रूप लेते हैं, और प्लेटों के किनारों के आसपास फ्रिंजिंग प्रभावों की उपेक्षा करते हैं:

जब उनके 1865 के पेपर विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत में विस्थापन धारा से विद्युत चुम्बकीय तरंग समीकरण को प्राप्त करने की बात आई, उन्होंने गॉस के नियम और परावैद्युत विस्थापन से जुड़े गैर-शून्य विचलन की समस्या को हल किया, गॉस शब्द को समाप्त कर दिया और विशेष रूप से परिनालिकीय चुंबकीय क्षेत्र संवाहक के लिए तरंग समीकरण प्राप्त किया।

ध्रुवीकरण पर मैक्सवेल के जोर ने वैद्युत संधारित्र परिपथ की ओर ध्यान आकर्षित किया, और आम धारणा को जन्म दिया कि मैक्सवेल ने विस्थापन धारा की कल्पना कीजिससे की वैद्युत संधारित्र परिपथ में चार्ज के संरक्षण को बनाए रखा जा सके। मैक्सवेल की सोच के बारे में कई तरह की बहस योग्य धारणाएँ हैं, जिसमें क्षेत्र समीकरणों की समरूपता को पूर्ण करने की उनकी कथित इच्छा से लेकर निरंतरता समीकरण के साथ अनुकूलता प्राप्त करने की इच्छा सम्मलित होती है।[11][12]

यह भी देखें

  • विद्युत चुम्बकीय तरंग समीकरण
  • विद्युतधारा की इकाई का नियम
  • समाई और 'विस्थापन धारा'

संदर्भ

  1. John D Jackson (1999). शास्त्रीय इलेक्ट्रोडायनामिक्स (3rd ed.). Wiley. p. 238. ISBN 978-0-471-30932-1.
  2. For example, see David J Griffiths (1999). Introduction to Electrodynamics (3rd ed.). Pearson/Addison Wesley. p. 323. ISBN 978-0-13-805326-0. and Tai L Chow (2006). Introduction to Electromagnetic Theory. Jones & Bartlett. p. 204. ISBN 978-0-7637-3827-3.
  3. Palmer, Stuart B. & Rogalski, Mircea S. (1996). Advanced University Physics. Taylor & Francis. p. 214. ISBN 978-2-88449-065-8 – via Google Books.
  4. Serway, Raymond A. & Jewett, John W. (2006). Principles of Physics. Thomson Brooks/Cole. p. 807. ISBN 978-0-534-49143-7 – via Google Books.
  5. Feynman, Richard P.; Leighton, Robert & Sands, Matthew (1963). The Feynman Lectures on Physics. Vol. 2. Massachusetts, USA: Addison-Wesley. p. 18‑4. ISBN 978-0-201-02116-5 – via archive.org.
  6. Bonnett, Raymond & Cloude, Shane (1995). An Introduction to Electromagnetic Wave Propagation and Antennas. Taylor & Francis. p. 16. ISBN 978-1-85728-241-2 – via Google Books.
  7. Slater, J.C. & Frank, N.H. (1969) [1947]. Electromagnetism (reprint ed.). Courier Dover Publications. p. 84. ISBN 978-0-486-62263-7 – via Google Books.
  8. JC Slater and NH Frank (1969). विद्युत चुंबकत्व (op. cit. ed.). p. 91. ISBN 978-0-486-62263-7.
  9. J Billingham, A C King (2006). तरंग चलन. Cambridge University Press. p. 182. ISBN 978-0-521-63450-2.
  10. Daniel M. Siegel (2003). मैक्सवेल के इलेक्ट्रोमैग्नेटिक थ्योरी में इनोवेशन. Cambridge University Press. p. 85. ISBN 978-0-521-53329-4.
  11. Paul J. Nahin (2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. Johns Hopkins University Press. p. 109. ISBN 978-0-8018-6909-9.
  12. Vyacheslav Stepin (2002). सैद्धांतिक ज्ञान. Springer. p. 202. ISBN 978-1-4020-3045-1.


मैक्सवेल के कागजात

  • फैराडे की बल की रेखाओं पर मैक्सवेल का 1855 का पेपर
  • मीडिया: बल की भौतिक रेखाओं पर.pdf मैक्सवेल का 1861 का पेपर
  • मीडिया: विद्युत चुम्बकीय फील्ड का एक गतिशील सिद्धांत। पीडीएफ मैक्सवेल का 1864 का पेपर

अग्रिम पठन

  • AM Bork Maxwell, Displacement Current, and Symmetry (1963)
  • AM Bork Maxwell and the Electromagnetic Wave Equation (1967)


बाहरी संबंध