हैन बहुपद

From Vigyanwiki
Revision as of 16:24, 3 March 2023 by alpha>Indicwiki (Created page with "गणित में, हैन बहुपद 1875 में पफन्युटी चेबीशेव द्वारा शुरू की गई हाइप...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, हैन बहुपद 1875 में पफन्युटी चेबीशेव द्वारा शुरू की गई हाइपरजियोमेट्रिक ऑर्थोगोनल बहुपदों की आस्की योजना में ओर्थोगोनल बहुपदों का एक परिवार है। (Chebyshev 1907) और वोल्फगैंग हैन द्वारा फिर से खोजा गया (Hahn 1949). हैन वर्ग हैन बहुपदों के विशेष मामलों के लिए एक नाम है, जिसमें हैन बहुपद, मीक्सनर बहुपद, क्रॉचौक बहुपद और चार्लीयर बहुपद शामिल हैं। कभी-कभी हैन वर्ग को इन बहुपदों के मामले (गणित) को सीमित करने के लिए लिया जाता है, इस मामले में इसमें शास्त्रीय ऑर्थोगोनल बहुपद भी शामिल होते हैं।

हैन बहुपदों को सामान्यीकृत हाइपरज्यामितीय कार्यों के संदर्भ में परिभाषित किया गया है

Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) उनके गुणों की विस्तृत सूची दें।

अगर , स्केल फ़ैक्टर को छोड़कर ये बहुपद असतत चेबीशेव बहुपद के समान हैं।

बारीकी से संबंधित बहुपदों में दोहरी हैन बहुपद आर शामिल हैंn(x;γ,δ,N), सतत हैन बहुपद pn(एक्स, ए, बी, a, b), और सतत द्वैत हैन बहुपद Sn(एक्स; ए, बी, सी)। इन सभी बहुपदों में एक अतिरिक्त पैरामीटर q के साथ q-एनालॉग होते हैं, जैसे कि q-Hahn बहुपद Qn(x;α,β, N;q), और इसी तरह।

ऑर्थोगोनलिटी

जहां δx,yक्रोनकर डेल्टा फलन है और भार फलन हैं

और

.

अन्य बहुपदों से संबंध

  • राकाह बहुपद हैन बहुपदों का एक सामान्यीकरण है

संदर्भ

  • Chebyshev, P. (1907), "Sur l'interpolation des valeurs équidistantes", in Markoff, A.; Sonin, N. (eds.), Oeuvres de P. L. Tchebychef, vol. 2, pp. 219–242, Reprinted by Chelsea
  • Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248