एफ़िन समतल

From Vigyanwiki
Revision as of 08:39, 15 March 2023 by alpha>Artiverma

ज्यामिति में, एफ़िन तल द्वि-आयामी एफ़िन समतल है।

उदाहरण

एफ़िन समतल के विशिष्ट उदाहरण हैं-

  • यूक्लिडियन तल, जो मीट्रिक (गणित), यूक्लिडियन दूरी से सुसज्जित वास्तविक संख्या से अधिक परिबद्ध तल हैं। दूसरे शब्दों में, रियल के ऊपर एफाइन तल यूक्लिडियन समतल है जिसमें कोई मीट्रिक अज्ञान्त हो गया है (अर्थात, कोई लंबाई का विचार नहीं करता है और न ही कोण के उपायों की)।
  • आयाम दो के वेक्टर रिक्त स्थान, जिसमें शून्य वेक्टर को अन्य तत्वों से भिन्न नहीं माना जाता है।
  • प्रत्येक क्षेत्र (गणित) या विभाजन वलय F के लिए, समुच्चय F2 है।
  • किसी भी प्रक्षेपी तल से किसी रेखा (और इस रेखा के सभी बिंदुओं) को विस्थापित करने का परिणाम एफ़िन तल है।

निर्देशांक और समरूपता

क्षेत्र पर परिभाषित सभी सजातीय तल समरूपी होते हैं। उपयुक्त रूप से, क्षेत्र F पर एफ़िन समतल P के लिए एफ़िन निर्देशांक प्रणाली (या, वास्तविक हानि में, कार्टेशियन समन्वय प्रणाली) का चयन P और F के मध्य एफ़िन तलों के समरूपता को प्रेरित करता है।

अधिक सामान्य स्थिति में, जहां एफ़िन समतल को क्षेत्र पर परिभाषित नहीं किया जाता है, वे सामान्य रूप से आइसोमोर्फिक नहीं होंगे। भिन्न-भिन्न रेखाओं को विस्थापित करने से गैर-कार्टेशियन समतल से उत्पन्न होने वाले दो एफाइन तल आइसोमोर्फिक नहीं हो सकते है।

परिभाषाएँ

औपचारिक रूप से एफ़िन समतल को परिभाषित करने के दो उपाय होते हैं, जो क्षेत्र में एफ़िन समतल के सामान्य हैं। पूर्व में एफाइन तल को समुच्चय के रूप में परिभाषित करना सम्मलित है, जिस पर डायमेंशन दो का समूह वेक्टर समतल होता है। सहजता से, इसका अर्थ यह है कि सजातीय तल आयाम दो का सदिश स्थान है जिसमें कोई अज्ञान्त गया है कि मूल कहाँ है। घटना ज्यामिति में, सजातीय तल (घटना ज्यामिति) की सिद्धांत प्रणाली को संतुष्ट करने वाले बिंदुओं और रेखाओं की सार प्रणाली के रूप में परिभाषित किया गया है।

अनुप्रयोग

गणित के अनुप्रयोगों में, अधिकांशतः ऐसी स्थितियां होती हैं जहां यूक्लिडियन समतल के अतिरिक्त यूक्लिडियन मीट्रिक के बिना सम्बंधित समतल का उपयोग किया जाता है। उदाहरण के लिए, फ़ंक्शन के ग्राफ़ में, जिसे कागज पर आरेख किया जा सकता है, और जिसमें कण की स्थिति को समय के विरुद्ध क्रमित किया जाता है, यूक्लिडियन मीट्रिक व्याख्या के लिए पर्याप्त नहीं है, क्योंकि इसके बिंदुओं के मध्य की दूरी या माप रेखाओं के मध्य के कोणों का, सामान्य रूप से, कोई भौतिक महत्व नहीं होता है (एफ़ाइन तल में अक्ष की विभिन्न इकाइयों का उपयोग कर सकते हैं, जो तुलनीय नहीं हैं, और माप भी विभिन्न इकाइयों और पैमानों के साथ भिन्न होते हैं[1]).[2][3]


स्रोत

  • Artin, Emil (1987), "II. Affine and Projective Geometry", Geometric Algebra, Interscience Publishers, ISBN 0-470-03432-7
  • Blumenthal, Leonard M. (1980) [1961], "IV. Coordinates in an Affine Plane", A Modern View of Geometry, Dover, ISBN 0-486-63962-2
  • Gruenberg, K.W.; Weir, A.J. (1977), "II. Affine and Projective Geometry", Linear Geometry (2nd ed.), Springer-Verlag, ISBN 0-387-90227-9
  • Snapper, Ernst; Troyer, Robert J. (1989) [1971], Metric Affine Geometry, Dover, ISBN 0-486-66108-3
  • Yale, Paul B. (1968), "Chapter 5 Affine Spaces", Geometry and Symmetry, Holden-Day

संदर्भ

  1. See also the books of Mandelbrot, "Gaussian Self-Affinity and Fractals", of Levi, "Foundations of Geometry and Trigonometry", and of Yaglom, "A Simple Non-Euclidean Geometry and its Physical Basis".
  2. Paul Bamberg; Shlomo Sternberg (1991). भौतिकी के छात्रों के लिए गणित में एक कोर्स. Vol. 1. Cambridge University Press. pp. 1–2. ISBN 978-0-521-40649-9.
  3. Howard Levi (1975). ज्यामिति में विषय. R. E. Krieger Publishing Company. p. 75. ISBN 978-0-88275-280-8.