7075 एल्यूमीनियम मिश्र धातु

From Vigyanwiki
Revision as of 22:26, 22 March 2023 by alpha>Saurabh
A7075 T6
Physical properties
Density (ρ)2.81 g/cm3 (0.102 lb/cu in)
Mechanical properties
Young's modulus (E)71.7 GPa (10,400 ksi)
Tensile strength t)572 MPa (83.0 ksi)
Elongation (ε) at break11%
Poisson's ratio (ν)0.33
HardnessRockwell87 HRB
Thermal properties
Melting temperature (Tm)477 °C (891 °F)
Thermal conductivity (k) [1]130–150 W/m*K
Linear thermal expansion coefficient (α)2.36*10−5 K−1
Specific heat capacity (c)714.8 J/kg*K
Electrical properties
Volume resistivity (ρ)51.5 nOhm*m

7075 एल्यूमीनियम मिश्र धातु (AA7075) प्राथमिक मिश्र धातु तत्व के रूप में जस्ता के साथ एल्यूमीनियम मिश्र धातु है। इसमें उत्कृष्ट यांत्रिक गुण हैं और अच्छा लचीलापन, उच्च शक्ति और अच्छा प्रतिरोध प्रदर्शित करता है। सूक्ष्म पृथक्करण के कारण कई अन्य एल्यूमीनियम मिश्र धातुओं की तुलना में यह उत्सर्जन के लिए अधिक संवेदनशील है। किन्तु 2000 श्रृंखला से मिश्र धातुओं की तुलना में ज्यादा उत्तम संक्षारण प्रतिरोध है। यह अत्यधिक तनाव वाले संरचनात्मक अनुप्रयोगों के लिए सबसे अधिक उपयोग किए जाने वाले एल्यूमीनियम मिश्र धातुओं में से एक है और इसका व्यापक रूप से विमान संरचनात्मक भागों में उपयोग किया जाता है।[2]

7075 एल्यूमीनियम मिश्र धातु की संरचना में सामान्यतः 5.6-6.1% जस्ता, 2.1-2.5% मैगनीशियम, 1.2-1.6% तांबा और आधा प्रतिशत से कम सिलिकॉन, लोहा, मैंगनीज, टाइटेनियम, क्रोमियम और अन्य धातु सम्मिलित हैं। यह कई एल्यूमीनियम मिश्र धातु तापमान में निर्मित होता है। जिनमें से कुछ 7075-0, 7075-T6, 7075-T651 प्रमुख धातुओे के रूप हैं।

पहले 7075 को 1935 में एक जापानी कंपनी सुमितोमो धातु उद्योग द्वारा गुप्त रूप से विकसित किया गया था।[3] किन्तु अलकोआ द्वारा 1943 में पकड़े गए जापानी विमान की जांच के बाद रिवर्स इंजीनियर किया गया।[4] 7075 को 1945 में एयरोस्पेस उपयोग के लिए मानकीकृत किया गया था।[5] 7075 अंततः इंपीरियल जापानी नौसेना वायु सेवा में एयरफ्रेम उत्पादन के लिए प्रयोग किया गया था।

मूल गुण

एल्युमिनियम 7075A का घनत्व 2.810 ग्राम/सेमी3 है।[6]


यांत्रिक गुण

7075 के यांत्रिक गुण सामग्री के तड़के (धातु विज्ञान) पर ज्यादा हद तक निर्भर करते हैं।[7]


7075-0

अन-हीट-ट्रीटेड 7075 (7075-0 टेम्परेचर) की अधिकतम तन्यता शक्ति 280 MPa (40,000 psi) इससे अधिक नहीं है और अधिकतम उपज शक्ति 140 MPa (21,000 psi) से अधिक नहीं है। सामग्री में 9-10% की बढ़त (अंतिम विफलता से पहले खिंचाव) है। जैसा कि सभी 7075 एल्यूमीनियम मिश्र धातुओं के स्थितियों में है। 7075-0 सामान्यतः स्वीकार्य शक्ति प्रोफ़ाइल के साथ अत्यधिक संक्षारण प्रतिरोधी है।

7075-टी6

T6 टेम्पर 7075 में परम तन्य शक्ति 510–540 MPa (74,000–78,000 psi) है और उपज शक्ति कम से कम 430–480 MPa (63,000–69,000 psi) है। इसमें 5-11% की विफलता बढ़ाव है।[8]

T6 तापमान सामान्यतः कास्ट 7075 को 450 °C पर कई घंटों के लिए होमोजेनाइज़ करके, नष्ट करके और फिर 24 घंटों के लिए 120 °C पर उम्र बढ़ने से प्राप्त किया जाता है। इससे 7075 मिश्र धातुओं की उच्च शक्ति प्राप्त होती है। शक्ति मुख्य रूप से छोटे छितरे हुए एटा से प्राप्त होती है और एटा' अनाज के अन्दर और अनाज की सीमाओं के साथ अवक्षेपित होता है।[9]


7075-T651

T651 तापमान 7075 की परम तन्य शक्ति 570 MPa (83,000 psi) है और 500 MPa (73,000 psi) की उपज शक्ति है। इसमें 3–9% की विफलता बढ़ाव है। प्रयुक्त सामग्री के रूप के आधार पर ये गुण बदल सकते हैं। ऊपर सूचीबद्ध संख्याओं की तुलना में मोटी प्लेटें कम शक्ति और बढ़ाव प्रदर्शित कर सकती हैं।

7075-टी7

T7 टेम्पर में परम तन्य शक्ति 505 MPa (73,200 psi) होती है और 435 MPa (63,100 psi) की उपज शक्ति है। इसमें 13% की विफलता बढ़ाव है।[10] सामग्री के अधिक उम्र बढ़ने (जिसका अर्थ है उच्च कठोरता से दूर) T7 द्वारा टेम्पर प्राप्त किया जाता है। यह प्रायः 100-120 डिग्री सेल्सियस पर कई घंटों के लिए और फिर 160-180 डिग्री सेल्सियस पर 24 घंटे या उससे अधिक समय तक उम्र बढ़ने से पूरा होता है। T7 तापमान अधिकतर एटा अवक्षेप का एक सूक्ष्म संरचना उत्पन्न करता है। T6 टेम्पर के विपरीत ये एटा कण बहुत बड़े होते हैं और अनाज की सीमाओं के साथ विकास पसंद करते हैं। यह तनाव दरार की संवेदनशीलता को कम करता है। T7 टेम्परेचर T73 टेम्परेचर के बराबर करने में सहायता प्रदान करता है।[9]


7075-आरआरए

प्रतिगमन और रीएज (आरआरए) स्वभाव एक बहुस्तरीय ताप उपचार स्वभाव है। T6 टेम्परेचर में एक शीट से शुरू होकर, इसमें T7 टेम्परेचर के पास की चरम कठोरता (T6 टेम्पर) को पार करना सम्मिलित है। 24 घंटे के लिए 120 डिग्री सेल्सियस पर बाद में रीजिंग करने से कठोरता और मजबूती वापस T6 टेंपरेचर लेवल पर या बहुत करीब आ जाती है।[9]

आरआरए उपचार कई अलग-अलग प्रक्रियाओं के साथ पूरा किया जा सकता है। सामान्य दिशा-निर्देश 15 मिनट 10 सेकंड के लिए 180 और 240 °C के बीच पश्चगामी हो रहे हैं।[11]


समतुल्य सामग्री

Table of equivalent materials[12]
US ISO European Union Germany Japan Australia China
Standard AISI (UNS) Standard Designation Standard Numerical (Chemical symbols) Standard Designation (Material number) Standard Grade Standard Designation Standard Grade
ASTM B209,

ASTM B210, ASTM B211, ASTM B221, AMS-QQ-A-225/9, AMS-QQ-A-200/11, AMS-QQ-A-250/12, AMS-WW-T-700/7

7075

(A97075)

ISO 209 AW-7075 EN 573-3 EN AW-7075

(EN AW-AlZn5,5MgCu)

DIN 1725-1 AlZnMgCu1,5 (3.4365) JIS H4000;

JIS H4040

7075 AS 2848.1,

AS/NZS 1734, AS/NZS 1865, AS/NZS 1866

7075 GB/T 3190;

GB/T 3880.2

7075


उपयोग करता है

7075 एल्यूमीनियम मिश्र धातु का दुनिया का पहला बड़े पैमाने पर उत्पादन मित्सुबिशी A6M जीरो फाइटर के लिए किया गया था। विमान अपनी उत्कृष्ट गतिशीलता के लिए जाना जाता था जिसे पिछले एल्यूमीनियम मिश्र धातुओं की तुलना में 7075 की उच्च शक्ति द्वारा सुगम बनाया गया था।

7075 जैसे 7000 श्रृंखला के मिश्रधातु प्रायः समुद्री, मोटर वाहन और विमानन सहित उनकी उच्च विशिष्ट शक्ति के कारण परिवहन अनुप्रयोगों में उपयोग किए जाते हैं।[7][13] रॉक क्लाइम्बिंग उपकरण, साइकिल घटकों, इनलाइन-स्केटिंग-फ़्रेम और हैंग ग्लाइडर एयरफ़्रेम में इन समान गुणों का उपयोग सामान्यतः 7075 एल्यूमीनियम मिश्र धातु से किया जाता है। हॉबी-ग्रेड आरसी मॉडल सामान्यतः चेसिस प्लेट्स के लिए 7075 और 6061 का उपयोग करते हैं। 7075 का उपयोग अमेरिकी सेना के लिए एम 16 राइफलों के साथ-साथ नागरिक बाजार के लिए AR-15 शैली की राइफलों के निर्माण में किया जाता है। विशेष रूप से उच्च-गुणवत्ता वाले M16 राइफल के निचले और ऊपरी रिसीवर, साथ ही एक्सटेंशन ट्यूब, सामान्यतः 7075-T6 मिश्र धातु से बने होते हैं। डेजर्ट टैक्टिकल आर्म्स, एसआईजी सॉयर और फ्रांसीसी आयुध कंपनी पीजीएम प्रिसिजन अपनी सटीक राइफलों के लिए इसका प्रयोग करते हैं। यह सामान्यतः लाक्रोस स्टिक्स के लिए शाफ्ट में भी प्रयोग किया जाता है, जैसे कि एसटीएक्स साबर, और कैंपिंग चाकू और कांटा सेट। यह प्रतियोगिता यो-यो में भी उपयोग की जाने वाली एक सामान्य सामग्री है।

इसकी उच्च शक्ति, कम घनत्व, तापीय गुणों और इसकी अत्यधिक पॉलिश करने की क्षमता के कारण, 7075 मोल्ड टूल निर्माण में व्यापक रूप से उपयोग किया जाता है। इस मिश्रधातु को इस अनुप्रयोग के लिए अन्य 7000 श्रृंखला मिश्रधातुओं में और परिष्कृत किया गया है, अर्थात् 7050 और 7020।

एयरोस्पेस अनुप्रयोग

7075 का उपयोग स्पेस शटल सॉलिड रॉकेट बूस्टर नोज़ल और इंटर-टैंक सेक्शन में स्पेस शटल के बाहरी टैंक SRB बीम में किया गया था। फॉरवर्ड- और आफ्टर स्कर्ट के साथ-साथ S-II का इंटरस्टेज, शनि वि का दूसरा चरण 7075 से बनाया गया था।[14]


अनुप्रयोग

  1. विमान फिटिंग
  2. गियर्स और शाफ्ट
  3. मिसाइल के पुर्जे
  4. वाल्व भागों को विनियमित करना
  5. वर्म गियर्स
  6. एयरोस्पेस / रक्षा अनुप्रयोग
  7. ऑटोमोटिव

व्यापार नाम

7075 को ज़िक्राल, एर्गल और फोर्टल कंस्ट्रक्शनल सहित विभिन्न व्यापारिक नामों के तहत बेचा गया है। साँचे बनाने के लिए ब्रांड नाम के तहत बेची जाने वाली लगभग 7000 श्रृंखला मिश्र धातुओं में एलुमेक 79, एलुमेक 89, कॉन्टल, सर्टल, एलुमौल्ड और होकोटोल सम्मिलित हैं।

यह भी देखें

  1. नॉर्थवेस्ट एयरलाइंस की उड़ान 421
  2. https://www.thomasnet.com/articles/metals-metal-products/all-about-7075-aluminum-properties-strength-and-uses/
  3. 6061 और 7075 एल्यूमीनियम के बीच क्या अंतर है?
  4. 7075 एल्युमिनियम: जानिए इसके गुण और उपयोग
  5. 7075 एल्यूमीनियम मिश्र धातु के गुण Archived 2018-10-16 at the Wayback Machine
  6. 7075 एल्यूमीनियम मिश्र धातु के गुण
  7. 7075 एल्यूमीनियम
  8. [1]

संदर्भ

  1. Juan J. Valencia, Peter N. Quested, "Thermophysical Properties"
  2. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 1990 pp. 137–38
  3. Yoshio, Baba."Extra super duralumin and successive aluminium alloys for aircraft." Journal of Japan Institute of Light Metals (Sumitomo Light Metal Ind. Ltd., Japan), Volume 39, Issue 5, p. 378. Retrieved: 22 November 2015.
  4. Yoshida, Hideo (2020). Shoeisha. ISBN 978-4-86693-295-8
  5. Canadian Aeronautics and Space Journal, 1989 vol 35-36 p. 129
  6. "7075 (AlZn5.5MgCu, 3.4365, 2L95, A97075) Aluminum :: MakeItFrom.com". www.makeitfrom.com. Retrieved 22 April 2018.
  7. 7.0 7.1 Alcoa 7075 data sheet Archived 2013-08-29 at the Wayback Machine (PDF), accessed October 13, 2006
  8. "एएसएम सामग्री डाटा शीट". asm.matweb.com. Archived from the original on 16 October 2018. Retrieved 22 April 2018.
  9. 9.0 9.1 9.2 Park, J. K., and A. J. Ardell. "Microstructures of the Commercial 7075 AI Alloy in the T651 and T7 Tempers". Metall. Trans. A. 14A (1983): 1957. Print.
  10. "एएसएम सामग्री डाटा शीट". asm.matweb.com. Retrieved 22 April 2018.
  11. Cina, Baruch M. REDUCING THE SUSCEPTIBILITY OF ALLOYS, PARTICULARLY ALUMINIUM ALLOYS, TO STRESS CORROSION CRACKING. Israel Aircraft Industries Ltd., assignee. Patent 3856584. 24 Dec. 1974. Print.
  12. "7075 Aluminum Alloy Properties, 7075-T6, T7351, T651". www.theworldmaterial.com. Archived from the original on 2021-10-16.
  13. T Hashimoto, S Jyogan (Showa Aluminium), K Nakata, Y G Kin and M Ushio (Osaka University): FSW joining of high strength Al alloy
  14. McCutcheon, Kimble D. (3 August 2022). "U.S. Manned Rocket Propulsion Evolution Part 8.20: The Saturn V S-II".


अग्रिम पठन

  • "Properties of Wrought Aluminum and Aluminum Alloys: 7075, Alclad 7075", Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2, ASM Handbook, ASM International, 1990, pp. 115–116.


बाहरी संबंध