क्वार्टिक के स्पर्शरेखाएँ

From Vigyanwiki
Revision as of 15:24, 8 February 2023 by alpha>Indicwiki (Created page with "{{Short description|28 lines which touch a general quartic plane curve in two places}} File:TrottCurveBiTangents7.svg|right|thumb|ट्रॉट वक्र और इस...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ट्रॉट वक्र और इसके सात स्पर्शरेखाएँ। अन्य मूल बिंदु से होकर 90° घूर्णन के संबंध में सममित हैं।
सभी 28 स्पर्श रेखाओं के साथ ट्रॉट वक्र।

बीजगणितीय समतल_वक्र के सिद्धांत में, एक सामान्य क्वार्टिक समतल वक्र में 28 द्विस्पर्श रेखाएँ होती हैं, वे रेखाएँ जो वक्र को दो स्थानों पर स्पर्श करती हैं। ये रेखाएँ जटिल प्रक्षेपी तल में मौजूद हैं, लेकिन क्वार्टिक वक्रों को परिभाषित करना संभव है, जिसके लिए इन सभी 28 पंक्तियों में उनके निर्देशांक के रूप में वास्तविक संख्याएँ हैं और इसलिए यूक्लिडियन विमान से संबंधित हैं।

अट्ठाईस वास्तविक स्पर्शरेखाओं वाला एक स्पष्ट चतुर्थांश सबसे पहले किसके द्वारा दिया गया था Plücker (1839)[1] जैसा कि प्लकर ने दिखाया, किसी भी क्वार्टिक के वास्तविक बिटेंटेंट की संख्या 28, 16, या 9 से कम संख्या होनी चाहिए। 28 वास्तविक बिटेंटेंट के साथ एक और क्वार्टिक निश्चित धुरी लंबाई, टेंगेंट के साथ दीर्घवृत्त के केंद्रों के लोकस (गणित) द्वारा बनाया जा सकता है दो गैर-समानांतर रेखाओं के लिए।[2] Shioda (1995) अट्ठाईस स्पर्शरेखाओं के साथ एक क्वार्टिक का एक अलग निर्माण दिया, जो एक घन सतह को प्रक्षेपित करके बनाया गया था; शियोडा के वक्र की सत्ताईस स्पर्श रेखाएँ वास्तविक हैं जबकि अट्ठाईसवीं प्रक्षेपी तल में अनंत पर रेखा है।

उदाहरण

ट्रॉट वक्र, 28 वास्तविक स्पर्शरेखाओं वाला एक अन्य वक्र, बिंदुओं का समूह है (x,y) एक बहुपद चार बहुपद समीकरण की डिग्री को संतुष्ट करता है

ये बिंदु एक निरर्थक क्वार्टिक वक्र बनाते हैं जिसमें ज्यामितीय जीनस तीन होता है और जिसमें अट्ठाईस वास्तविक स्पर्शरेखाएँ होती हैं।[3] प्लकर और ब्लम और गिनींड के उदाहरणों की तरह, ट्रॉट वक्र में चार अलग-अलग अंडाकार होते हैं, डिग्री चार की वक्र के लिए अधिकतम संख्या, और इसलिए एक हार्नैक का वक्र प्रमेय है|एम-वक्र। चार अंडाकारों को अंडाकारों के छह अलग-अलग जोड़े में बांटा जा सकता है; अंडाकारों की प्रत्येक जोड़ी के लिए जोड़ी में दोनों अंडाकारों को छूने वाले चार स्पर्शरेखा होते हैं, दो जो दो अंडाकारों को अलग करते हैं, और दो जो नहीं करते हैं। इसके अतिरिक्त, प्रत्येक अंडाकार विमान के एक गैर-उत्तल क्षेत्र को परिबद्ध करता है और इसकी सीमा के गैर-उत्तल भाग में फैला हुआ एक स्पर्शरेखा है।

अन्य संरचनाओं से कनेक्शन

क्वार्टिक वक्र के दोहरे वक्र में 28 वास्तविक साधारण दोहरे बिंदु होते हैं, जो मूल वक्र के 28 स्पर्शरेखाओं से दोहरे होते हैं।

क्वार्टिक के 28 स्पर्शरेखाओं को फॉर्म के प्रतीकों के अनुरूप भी रखा जा सकता है

कहाँ a, b, c, d, e, f सभी शून्य या एक और कहाँ हैं

[4]

के लिए 64 विकल्प हैं a, b, c, d, e, f, लेकिन इनमें से केवल 28 विकल्प एक विषम राशि का उत्पादन करते हैं। कोई व्याख्या भी कर सकता है a, b, c फ़ानो विमान के एक बिंदु के सजातीय निर्देशांक के रूप में और d, e, f एक ही परिमित प्रक्षेपी तल में एक रेखा के निर्देशांक के रूप में; यह शर्त कि योग विषम है, यह आवश्यक है कि बिंदु और रेखा एक दूसरे को स्पर्श न करें, और एक बिंदु और एक रेखा के 28 अलग-अलग जोड़े हैं जो स्पर्श नहीं करते हैं।

फ़ानो विमान के बिंदु और रेखाएँ जो एक गैर-घटना बिंदु-रेखा जोड़ी से अलग होती हैं, एक त्रिभुज बनाती हैं, और एक क्वार्टिक के द्विस्पर्शियों को फ़ानो विमान के 28 त्रिकोणों के साथ पत्राचार के रूप में माना जाता है।[5] फ़ानो तल का लेवी ग्राफहीवुड ग्राफ़ है, जिसमें फ़ानो तल के त्रिकोणों को 6-चक्रों द्वारा दर्शाया गया है। हेवुड ग्राफ के 28 6-चक्र बदले में कॉक्सेटर ग्राफ के 28 शीर्षों के अनुरूप हैं।[6] क्वार्टिक के 28 स्पर्शरेखा भी डिग्री -2 टुकड़े की सतह का पर 56 लाइनों के जोड़े के अनुरूप हैं,[5]और 28 विषम थीटा विशेषताओं के लिए।

क्यूबिक पर 27 लाइनें और एक क्वार्टिक पर 28 बिटेंटेंट, साथ में जीनस 4 के कैनोनिक सेक्स्टिक समीकरण के 120 त्रिस्पर्शी विमानों के साथ, व्लादिमीर अर्नोल्ड के अर्थ में एक एडीई वर्गीकरण #ट्रिनिटी बनाते हैं, विशेष रूप से मैकके पत्राचार का एक रूप,[7][8][9] और ई सहित कई और वस्तुओं से संबंधित हो सकता है7 और ई8, जैसा कि एडीई वर्गीकरण#ट्रिनिटीज में चर्चा की गई है।

टिप्पणियाँ

  1. See e.g. Gray (1982).
  2. Blum & Guinand (1964).
  3. Trott (1997).
  4. Riemann (1876); Cayley (1879).
  5. 5.0 5.1 Manivel (2006).
  6. Dejter, Italo J. (2011), "From the Coxeter graph to the Klein graph", Journal of Graph Theory, 70: 1–9, arXiv:1002.1960, doi:10.1002/jgt.20597, S2CID 754481.
  7. le Bruyn, Lieven (17 June 2008), Arnold's trinities, archived from the original on 2011-04-11
  8. Arnold 1997, p. 13 – Arnold, Vladimir, 1997, Toronto Lectures, Lecture 2: Symplectization, Complexification and Mathematical Trinities, June 1997 (last updated August, 1998). TeX, PostScript, PDF
  9. (McKay & Sebbar 2007, p. 11)


संदर्भ